

E.T.S. Ingenieros Industriales Universidad Politécnica de Madrid

Ideas to create an adaptive finite element method for combustion problems

Jaime Carpio Huertas

A jointly work with:

<u>Professors:</u> Rodolfo Bermejo Marcos Vera Miguel Hermanns Amable Liñán <u>Students:</u> Pablo Fraile Ángel Fernández

Workshop on mathematical modelling of combustion 23-25/05/2011

Outline

Physical phenomenon

- Odel I
 - Mathematical model
 - Numerical method
 - Refinement strategies
- Model II
 - Mathematical model
 - Numerical validation

Onclusions

(Loading...)

Physical phenomenon: Diffusion-Flame/Vortex Interactions

Rehm & Clemens (1997)

• Turbulent combustion occurs in the form of laminar flames embedded in thin mixing layers locally strained by vortices.

Physical phenomenon: Diffusion-Flame/Vortex Interactions

Rehm & Clemens (1997)

• Turbulent combustion occurs in the form of laminar flames embedded in thin mixing layers locally strained by vortices.

Physical phenomenon: Diffusion-Flame/Vortex Interactions

Rehm & Clemens (1997)

- Turbulent combustion occurs in the form of laminar flames embedded in thin mixing layers locally strained by vortices.
- A complete description of the phenomenon requires:
 - a good mathematical model.
 - an efficient numerical method.

Physical phenomenon: Conservation Equations

$$\frac{\partial \rho}{\partial \tau} + \nabla \cdot (\rho \mathbf{u}) = 0$$

$$\rho \left(\frac{\partial \mathbf{u}}{\partial \tau} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = -\nabla \rho + \frac{Pr}{Pe_0} \nabla \cdot \left[\mu \left(\nabla \mathbf{u} + \nabla \mathbf{u}^{\mathrm{T}} \right) \right]$$

$$\rho \left(\frac{\partial h}{\partial \tau} + \mathbf{u} \cdot \nabla h \right) = \frac{1}{Pe_0} \nabla \cdot \mathbf{q}$$

$$\rho \left(\frac{\partial Y_i}{\partial \tau} + \mathbf{u} \cdot \nabla Y_i \right) = \frac{1}{Pe_0} \nabla \cdot \mathbf{j}_i + \mathcal{R} \dot{m}_i \qquad i \neq N_2$$

Scales

$$r_0, A_0, \rho_A, D_{TA}, h_A, \mu_A$$

Dimensionless parameters

$$Pe_0 = \frac{A_0 r_0^2}{D_{TA}}, \quad \mathcal{R} = \frac{A_{ext}}{A_0}, \quad \widetilde{\Gamma} = \Gamma / \left(2A_0 r_0^2 \right), \quad Pr = 0.72$$

- Model I (Simple model)
 - Constant fluid properties.
 - Infinitely fast chemical reaction.

Model I: Constitutive Equations

• Molecular transport models

$$\mathbf{j}_{i} = \rho D_{i} Y_{i}.$$

$$\mathbf{q} = -\lambda \nabla T + \sum_{i=1}^{l} h_{i} \mathbf{j}_{i},$$
with $\rho = \frac{\rho'}{\rho_{A}} = 1, \quad \mu = \frac{\mu'}{\mu_{A}} = 1, \quad \lambda = \frac{\lambda'}{\rho_{A} D_{TA} C \rho_{A}} = 1, \quad \rho D_{i} = \frac{\rho' D_{i}'}{\rho D_{TA}} = 1.$
and $h_{i} = h_{i}' / h_{A}, \qquad h_{i}' = h' i^{0} + C \rho_{A} (T' - T_{0})$

Model I: Constitutive Equations

• Molecular transport models

$$\mathbf{j}_{i} = \rho D_{i} Y_{i}.$$

$$\mathbf{q} = -\lambda \nabla T + \sum_{i=1}^{l} h_{i} \mathbf{j}_{i},$$
with $\rho = \frac{\rho'}{\rho_{A}} = 1, \quad \mu = \frac{\mu'}{\mu_{A}} = 1, \quad \lambda = \frac{\lambda'}{\rho_{A} D_{TA} C \rho_{A}} = 1, \quad \rho D_{i} = \frac{\rho' D_{i}'}{\rho D_{TA}} = 1.$
and $h_{i} = h'_{i} / h_{A}, \qquad h'_{i} = h'_{i} ^{0} + C \rho_{A} (T' - T_{0})$

• The chemical reaction is assumed to be infinitely fast:

$$F + sO_2 \rightarrow (1+s)P + q\left(\sum_{i=1}^{\prime} \nu_i h_i\right) \qquad \mathcal{R} \rightarrow \infty$$

Model I: Constitutive Equations

• Molecular transport models

$$\mathbf{j}_{i} = \rho D_{i} Y_{i}.$$

$$\mathbf{q} = -\lambda \nabla T + \sum_{i=1}^{l} h_{i} \mathbf{j}_{i},$$
with $\rho = \frac{\rho'}{\rho_{A}} = 1, \quad \mu = \frac{\mu'}{\mu_{A}} = 1, \quad \lambda = \frac{\lambda'}{\rho_{A} D_{TA} C \rho_{A}} = 1, \quad \rho D_{i} = \frac{\rho' D_{i}'}{\rho D_{TA}} = 1.$
and $h_{i} = h_{i}' / h_{A}, \qquad h_{i}' = h'_{i}{}^{0} + C \rho_{A} (T' - T_{0})$

• The chemical reaction is assumed to be infinitely fast:

$$F + sO_2 \rightarrow (1 + s)P + q\left(\sum_{i=1}^{l} \nu_i h_i\right) \qquad \mathcal{R} \rightarrow \infty$$

Energy and mass fraction equations introduce the mixture fraction Z defined as:

$$Z = \frac{SY_F/Y_{F,0} - Y_{O_2}/Y_{O_2,A} + 1}{1+S} : \qquad \left(\frac{\partial Z}{\partial \tau} + \mathbf{u} \cdot \nabla Z\right) = \frac{1}{Pe_0} \Delta Z$$

Model I: Original variables

• Z allows us to define the temperature, mass fractions of oxygen and fuel:

$$T = 1 + \gamma \left(\frac{1-Z}{1-Z_s}\right), \quad \frac{Y_F}{Y_{F,0}} = \frac{1-Z}{1-Z_s}, \quad Y_{O_2} = 0 \qquad \text{if } Z \ge Z_S$$

$$T = 1 + \gamma \frac{Z}{Z_s},$$
 $Y_F = 0,$ $\frac{Y_{O_2}}{Y_{O_2,A}} = 1 - \frac{Z}{Z_s}$ if $Z < Z_S$

with
$$Z_S = \frac{1}{S+1}$$
, $S = \frac{sY_{F,0}}{Y_{O_2,A}}$ and $\gamma = \frac{qY_{F,0}}{Cp_AT_0(1+S)}$

Model I: Original variables

• Z allows us to define the temperature, mass fractions of oxygen and fuel:

$$T = 1 + \gamma \left(\frac{1-Z}{1-Z_s}\right), \quad \frac{Y_F}{Y_{F,0}} = \frac{1-Z}{1-Z_s}, \quad Y_{O_2} = 0 \qquad \qquad \text{if} \quad Z \ge Z_S$$

$$T = 1 + \gamma \frac{Z}{Z_s},$$
 $Y_F = 0,$ $\frac{Y_{O_2}}{Y_{O_2,A}} = 1 - \frac{Z}{Z_s}$ if $Z < Z_S$

with
$$Z_S = \frac{1}{S+1}$$
, $S = \frac{sY_{F,0}}{Y_{O_2,A}}$ and $\gamma = \frac{qY_{F,0}}{Cp_A T_0(1+S)}$

• The velocity field is given by the incompressible Navier-Stokes equation, which can be to consider known for $Pe \gg 1$

$$u = \xi/2$$

 $v = -\eta$

Model I: Original variables

• Z allows us to define the temperature, mass fractions of oxygen and fuel:

$$T = 1 + \gamma \left(\frac{1-Z}{1-Z_s}\right), \quad \frac{Y_F}{Y_{F,0}} = \frac{1-Z}{1-Z_s}, \quad Y_{O_2} = 0 \qquad \qquad \text{if} \quad Z \ge Z_S$$

$$T = 1 + \gamma \frac{Z}{Z_s},$$
 $Y_F = 0,$ $\frac{Y_{O_2}}{Y_{O_2,A}} = 1 - \frac{Z}{Z_s}$ if $Z < Z_S$

with
$$Z_S = \frac{1}{S+1}$$
, $S = \frac{sY_{F,0}}{Y_{O_2,A}}$ and $\gamma = \frac{qY_{F,0}}{Cp_A T_0(1+S)}$

• The velocity field is given by the incompressible Navier-Stokes equation, which can be to consider known for $Pe \gg 1$

$$u = \xi/2 - \frac{\widetilde{\Gamma}}{\pi\xi_c} \left(\frac{\xi_c}{2\xi}\right)^{3/2} \left(\frac{\eta - \eta_c}{\xi_c}\right) I_1(\mu) \left[1 - e^{-(\rho/\delta_v)^2}\right]$$
$$v = -\eta + \frac{\widetilde{\Gamma}}{\pi\xi_c} \left(\frac{\xi_c}{2\xi}\right)^{3/2} \left[\frac{\xi}{\xi_c} I_1(\mu) - I_0(\mu)\right] \left[1 - e^{-(\rho/\delta_v)^2}\right]$$

Hermanns et al., Combustion & Flame (2007)

Model I: Problem to solve

$$\left(\frac{\partial Z}{\partial \tau} + \mathbf{u} \cdot \nabla Z\right) = \frac{1}{Pe_0} \Delta Z$$

Initial condition:

$$Z_0 = 1 - \frac{1}{2} \operatorname{erfc}\left[(\operatorname{Pe}_0/2)^{1/2}\eta\right]$$

Boundary condition:

- An efficient numerical treatment of multi-scales phenomena can be carried out with an adaptive method
- The idea is to adapt the domain of integration to the evolving features of the solution

- An efficient numerical treatment of multi-scales phenomena can be carried out with an adaptive method
- The idea is to adapt the domain of integration to the evolving features of the solution

- An efficient numerical treatment of multi-scales phenomena can be carried out with an adaptive method
- The idea is to adapt the domain of integration to the evolving features of the solution

- An efficient numerical treatment of multi-scales phenomena can be carried out with an adaptive method
- The idea is to adapt the domain of integration to the evolving features of the solution

- An efficient numerical treatment of multi-scales phenomena can be carried out with an adaptive method
- The idea is to adapt the domain of integration to the evolving features of the solution

• To solve the problem we use a semi-Lagrangian scheme.

$$\left[\frac{\partial Z}{\partial \tau} + \mathbf{u} \cdot \nabla Z = \frac{1}{Pe_0} \Delta Z\right]_{(X(x,\tau_n;\tau),\tau)}$$

 $X(x, \tau_n; \tau)$ characteristic curve backwards in time.

• To solve the problem we use a semi-Lagrangian scheme.

$$\left[\frac{\partial Z}{\partial \tau} + \mathbf{u} \cdot \nabla Z = \frac{1}{Pe_0} \Delta Z\right]_{(X(x,\tau_n;\tau),\tau)}$$

 $X(x, \tau_n; \tau)$ characteristic curve backwards in time.

• A parabolic equation is obtained

$$\begin{cases} \frac{\partial \overline{Z}}{\partial \tau} = \frac{1}{Pe_0} \Delta \overline{Z} & \text{in } [X(x, \tau_n; \tau), \tau] \text{ with } \tau < \tau_n \\ \overline{Z}_h(x, \tau_{n-1}) \text{ initial condition} \end{cases}$$

where $\overline{Z}(x,\tau) = Z(X(x,\tau_n;\tau),\tau)$ and $X(x,\tau_n;\tau_n) = x$.

• To solve the problem we use a semi-Lagrangian scheme.

$$\left[\frac{\partial Z}{\partial \tau} + \mathbf{u} \cdot \nabla Z = \frac{1}{Pe_0} \Delta Z\right]_{(X(x,\tau_n;\tau),\tau)}$$

 $X(x, \tau_n; \tau)$ characteristic curve backwards in time.

• A parabolic equation is obtained

$$\begin{cases} \frac{\partial \overline{Z}}{\partial \tau} = \frac{1}{Pe_0} \Delta \overline{Z} & \text{in } [X(x, \tau_n; \tau), \tau] \text{ with } \tau < \tau_n \\ \overline{Z}_h(x, \tau_{n-1}) \text{ initial condition} \end{cases}$$

where $\overline{Z}(x,\tau) = Z(X(x,\tau_n;\tau),\tau)$ and $X(x,\tau_n;\tau_n) = x$.

- Solution:
 - **Orection** Stage: The aim is calculate $\overline{Z}_h(x, \tau_{n-1})$.
 - Compute $X(x, \tau_n; \tau_{n-1})$ by Runge-Kutta(2).
 - Compute $\overline{Z}_h(x, \tau_{n-1}) \in V_h^n$ (P₂).

Bermejo & Carpio. IMA Journal of Numerical Analysis (2010).

• To solve the problem we use a semi-Lagrangian scheme.

$$\left[\frac{\partial Z}{\partial \tau} + \mathbf{u} \cdot \nabla Z = \frac{1}{Pe_0} \Delta Z\right]_{(X(x,\tau_n;\tau),\tau)}$$

 $X(x, \tau_n; \tau)$ characteristic curve backwards in time.

• A parabolic equation is obtained

$$\begin{cases} \frac{\partial \overline{Z}}{\partial \tau} = \frac{1}{Pe_0} \Delta \overline{Z} & \text{in } [X(x, \tau_n; \tau), \tau] \text{ with } \tau < \tau_n \\ \overline{Z}_h(x, \tau_{n-1}) \text{ initial condition} \end{cases}$$

where $\overline{Z}(x,\tau) = Z(X(x,\tau_n;\tau),\tau)$ and $X(x,\tau_n;\tau_n) = x$.

- Solution:
 - **Orection** Stage: The aim is calculate $\overline{Z}_h(x, \tau_{n-1})$.
 - Compute $X(x, \tau_n; \tau_{n-1})$ by Runge-Kutta(2).
 - Compute $\overline{Z}_h(x, \tau_{n-1}) \in V_h^n$ (P₂).

Bermejo & Carpio. IMA Journal of Numerical Analysis (2010).

- **2** Parabolic part: The aim is calculate $Z_h(x, \tau_n) = \overline{Z}_h(x, \tau_n)$.
 - Crank-Nikolson scheme in time.
 - Quadratic finite element in space.

Numerical Method: Error estimation I

Local a posteriori error will be computed.

- The error in the numerical integration is both in time and in space. However, $\Delta t = 0.005$ and we are only considering spatial adaptation.
- Spatial error can be evaluated as:

$$\eta_s^n = \eta_{conv}^n + \eta_{diff-reac}^n$$

Bermejo & Carpio. Boletín de la Sociedad de Matemática Aplicada (2008).

Numerical Method: Error estimation I

Local a posteriori error will be computed.

- The error in the numerical integration is both in time and in space. However, $\Delta t = 0.005$ and we are only considering spatial adaptation.
- Spatial error can be evaluated as:

$$\eta_{s}^{n} = \eta_{conv}^{n} + \eta_{diff-reac}^{n}$$

Bermejo & Carpio. Boletín de la Sociedad de Matemática Aplicada (2008).

- For $Pe_0 \gg 1 \longrightarrow \eta_{conv}^n \gg \eta_{diff-reac}^n$.
- Truncation error is evaluated in a new variable W(x).

$$\eta^n = \left\| W_h^{n-1}(X(x,\tau_n;\tau_{n-1})) - \overline{W}_h^{n-1}(x) \right\|_{L_2}^2$$

Numerical Method: Error estimation II

- For this problem the variable W(x) = Z(x)
- Truncation error:

$$\eta^n = \sum_{K} \left(\int_{K} \left[Z_h^{n-1}(X(x,\tau_n;\tau_{n-1})) - \overline{Z}_h^{n-1}(x) \right]^2 dK \right).$$

• We compute the integrals using quadrature points x_g . $x_g = F_K(\hat{x}_g)$ and $X^{n-1}(x_g) \approx y_g = \tilde{F}_K(\hat{x}_g)$.

Numerical Method: Error estimation II

- For this problem the variable W(x) = Z(x)
- Truncation error:

$$\eta^n = \sum_{\mathcal{K}} \left(\int_{\mathcal{K}} \left[Z_h^{n-1}(X(x,\tau_n;\tau_{n-1})) - \overline{Z}_h^{n-1}(x) \right]^2 d\mathcal{K} \right).$$

• We compute the integrals using quadrature points x_g . $x_g = F_K(\hat{x}_g)$ and $X^{n-1}(x_g) \approx y_g = \tilde{F}_K(\hat{x}_g)$.

• The optimal size A_{K}^{opt} to satisfy $\eta^{n} < \mathit{Tol}$ is

$$A_{K}^{opt} = A_{K} \left(\frac{Tol}{\sum_{K \in \mathbb{T}_{h}} \eta_{K}^{1/(\alpha+1)}} \right)^{\frac{1}{\alpha}} \eta_{K}^{-1/(\alpha+1)} \quad \text{with} \quad \alpha = 3$$

The ratio A_{K}^{opt}/A_{K} defines the size of the new elements of the mesh.

 The element K (father) is divided into two elements (children) by cutting the refinement edge at its midpoint.
 Bisection algorithm

- The element K (father) is divided into two elements (children) by cutting the refinement edge at its midpoint.
 Bisection algorithm
- A conforming and non-degenerated triangulation must be always maintain.

- The element K (father) is divided into two elements (children) by cutting the refinement edge at its midpoint.
 Bisection algorithm
- A conforming and non-degenerated triangulation must be always maintain.
 - Avoid the presence of hanging nodes.

- The element K (father) is divided into two elements (children) by cutting the refinement edge at its midpoint.
 Bisection algorithm
- A conforming and non-degenerated triangulation must be always maintain.
 - Avoid the presence of hanging nodes.
 - Maintain the mesh regular in the refined procedure.

- The element K (father) is divided into two elements (children) by cutting the refinement edge at its midpoint.
 Bisection algorithm
- A conforming and non-degenerated triangulation must be always maintain.
 - Avoid the presence of hanging nodes.
 - Maintain the mesh regular in the refined procedure.
- A marked element forces to refine those elements which shear the refinement edge and only refinements by it are allowed.

- The element K (father) is divided into two elements (children) by cutting the refinement edge at its midpoint.
 Bisection algorithm
- A conforming and non-degenerated triangulation must be always maintain.
 - Avoid the presence of hanging nodes.
 - Maintain the mesh regular in the refined procedure.
- A marked element forces to refine those elements which shear the refinement edge and only refinements by it are allowed.

- The element K (father) is divided into two elements (children) by cutting the refinement edge at its midpoint.
 Bisection algorithm
- A conforming and non-degenerated triangulation must be always maintain.
 - Avoid the presence of hanging nodes.
 - Maintain the mesh regular in the refined procedure.
- A marked element forces to refine those elements which shear the refinement edge and only refinements by it are allowed.

- The element K (father) is divided into two elements (children) by cutting the refinement edge at its midpoint.
 Bisection algorithm
- A conforming and non-degenerated triangulation must be always maintain.
 - Avoid the presence of hanging nodes.
 - Maintain the mesh regular in the refined procedure.
- A marked element forces to refine those elements which shear the refinement edge and only refinements by it are allowed.

• In 2D the refinement loop finishes if the refinement edge is the longest edge of each element.

• In 2D the refinement loop finishes if the refinement edge is the longest edge of each element.

(Loading...)

(Loading...)

$$Pe_0 = 80, \quad \widetilde{\Gamma} = 40$$

Isotropic Adaptation: 3D

• In 3D the refinement loop is more complicated.

• The loop finishes if the macro-triangulation satisfies the Kossaczky condition (The mesh is derived form hexahedral triangulation and they are classified in 3 types of elements):

I.Kossaczky. Journal of Computational and Applied Mathematics (1994).

- An arbitrary mesh needs a pre-adaptation divided each tetrahedron into twelve tetrahedra.
- Use a mesh generator satisfying the required conditions:
 R. Montenegro, J.M. Cascón, J.M. Escobar, E. Rodráuez, G. Montero. Institute for Intelligent Systems and Numerical Applications in Engineering (2009).

Isotropic Adaptation: 3D

Tridimensional simulations

(Loading...)

(Loading...)

$$Pe_0 = 80, \quad \widetilde{\Gamma} = 40$$

Anisotropic versus Isotropic Adaptation: 2D

- With the bisection algorithm mesh elements are adjusted only in size.
- In some cases the solution shows directional features.
- In these situations, anisotropic meshes might provide better results.

Anisotropic versus Isotropic Adaptation: 2D

- With the bisection algorithm mesh elements are adjusted only in size.
- In some cases the solution shows directional features.
- In these situations, anisotropic meshes might provide better results.

• The size but also the shape and orientation of the mesh must be defined. Metric tensor.

The metric tensor parameters depend on the a posteriori error estimator:

$$\left\|Z - I_{\mathcal{K}}(Z)\right\|_{L^{2}(\mathcal{K})} \leq C \left|\mathcal{K}\right| \left[\sum_{i=1}^{d} s_{i,\mathcal{K}}\left(\mathbf{r}_{i,\mathcal{K}}^{T} G_{\mathcal{K}}(Z) \mathbf{r}_{i,\mathcal{K}}\right)\right]^{1/2}$$

with G(Z) Hessian matrix of the solution Z where $\lambda_{i,K} = s_{i,K} |K|^{1/d}$

The metric tensor parameters depend on the a posteriori error estimator:

$$\|Z - I_{\mathcal{K}}(Z)\|_{L^{2}(\mathcal{K})} \leq C |\mathcal{K}| \left[\sum_{i=1}^{d} s_{i,\mathcal{K}} \left(\mathbf{r}_{i,\mathcal{K}}^{T} \mathcal{G}_{\mathcal{K}}(Z) \mathbf{r}_{i,\mathcal{K}} \right) \right]^{1/2}$$

with G(Z) Hessian matrix of the solution Z where $\lambda_{i,K} = s_{i,K} |K|^{1/d}$

• The optimal shape and orientation of the triangle are given by:

$$\hat{s}_{i,k} = \left(\prod_{i=1}^{d} g_{i,K}\right)^{1/d} g_{d+1-i,K}^{-1}$$
$$\hat{\mathbf{f}}_{i,K}^{T} = \mathbf{I}_{d+1-i,K}$$

where I_i and $g_{i,K}$ is the eigenvector and eigenvalue of the Hessian matrix G(Z).

- The size of the triangles is given by A_K^{opt} computed before.
- Mesh generator code used in this work:
 - F. Hecht, 'BAMG: Bidimensional Anisotropic Mesh Generator'

Simulation with anisotropic elements: Axisymmetric configuration

(Loading...)

(Loading...)

$$Pe_0 = 80, \quad \widetilde{\Gamma} = 40$$

Model II (Complex model)

- Detailed transport models.
- H_2 /Air chemical kinetic model.

Model II: Constitutive Equations

$$\rho = \frac{M}{T}, \qquad M = \frac{1}{M_A} \left(\sum_{i=1}^{I} Y_i / M_i \right)^{-1}$$

$$\mathbf{q} = -\lambda \nabla T + \sum_{i=1}^{I} h_i \mathbf{j}_i, \qquad \lambda = \frac{\lambda' T_0}{\rho_A D_{TA} h_A}, \qquad h_i = h'_i / h_A$$

$$\mathbf{j}_i = \rho Y_i \left(\mathbf{V}_i^D + \mathbf{V}_i^T + \mathbf{V}_c \right), \qquad \rho D_i = \frac{\rho' D'_i}{\rho D_{TA}}$$
Ordinary diffusion
$$\mathbf{V}_i^D = -\frac{D_i}{X_i} \nabla X_i$$
Thermal diffusion
$$\mathbf{V}_i^T = \frac{D_i \theta_i}{X_i} \frac{\nabla T}{T}$$
Correction velocity
$$\mathbf{V}_c = -\sum \left(Y_i \mathbf{V}_i^D + Y_i \mathbf{V}_i^T \right)$$

where h'_i , μ' , λ' , D'_i and θ_i are functions of the local thermodynamical state of the mixture (Kee et al., CHEMKIN (1983)).

Model II: Chemistry Model

$$\dot{m}_i = \frac{\dot{m}_i'}{\rho_A A_{ext}}$$

$$3H_2 + O_2 \rightleftharpoons 2H + 2H_2O$$
$$2H \rightleftharpoons H_2$$

Reaction		Α	n	$T_a[K]$
1. $H+O_2 \rightleftharpoons OH+O$	k_f	$3.52 \cdot 10^{16}$	-0.700	8590
	k_b	$7.04 \cdot 10^{13}$	-0.264	72
2. $H_2+O \rightleftharpoons OH+H$	k_f	$5.06 \cdot 10^{4}$	2.670	3166
	k_b	$3.03 \cdot 10^{4}$	2.633	2433
3. $H_2+OH \rightleftharpoons H_2O+H$	k_f	$1.17 \cdot 10^{9}$	1.300	1829
	k_b	$1.29 \cdot 10^{10}$	1.196	9412
4. $H+O_2+M_4 \rightarrow HO_2+M_4$	k_0	$5.75 \cdot 10^{19}$	-1.400	0
	k_{∞}	$4.65 \cdot 10^{12}$	0.440	0
5f. $HO_2+H \rightarrow OH+OH$		$7.08 \cdot 10^{13}$	0	148
6. $HO_2+H \rightarrow H_2+O_2$	k_f	$1.66 \cdot 10^{13}$	0	414
	k_b	$2.69 \cdot 10^{12}$	0.36	27888
7. $HO_2+OH \rightarrow H_2O+O_2$		$2.89 \cdot 10^{13}$	0	-250
8. $H+OH+M_8 \rightarrow H_2O+M_8$	k_f	$4.00 \cdot 10^{22}$	-2.0	0
	k_b	$1.03 \cdot 10^{23}$	-1.75	59675
9. $H+H+M_9 \rightarrow H_2+M_9$	k_f	$1.30 \cdot 10^{18}$	-1.0	0
	k_{b}	$3.04 \cdot 10^{17}$	-0.65	52092

San Diego Mechanism (2005)

 $w'_{\rm H} = k_{1f} C_{\rm O_2} C_{\rm H} - k_{1b} C_{\rm OH} C_{\rm O} + k_{5f} C_{\rm H} C_{\rm HO_2}$ $w'_{\rm H} = k_{4f} C_{M_4} C_{\rm O_2} C_{\rm H} + k_{8f} C_{M_8} C_{\rm H} C_{\rm OH} + k_{9f} C_{M_9} C_{\rm H} C_{\rm H}$

Mauss et al. (1993)

Model II: Boundary Conditions

Boundary conditions are taken from the steady unperturbed counterflow configuration

$$\begin{array}{c} \mathbf{u} = \rho_{F}^{-1/2}(\xi/2, \eta_{0} - \eta) \\ \eta \quad h - h_{F}/h_{A} = Y_{\mathrm{H}2} - Y_{F,0} = 0 \\ Y_{\mathrm{H}} = Y_{\mathrm{O}2} = 0 \\ \eta_{\mathrm{max}} & & \\ &$$

Model II: Initial Conditions

$$u = u_{ss}$$

$$v = v_{ss}$$

Model II: Initial Conditions

$$u = u_{ss} - \frac{\tilde{\Gamma}}{\pi\xi_c} \left(\frac{\xi_c}{2\xi}\right)^{3/2} \left(\frac{\eta - \eta_c}{\xi_c}\right) l_1(\mu) \left[1 - e^{-(\rho/\delta_v)^2}\right]$$
$$v = v_{ss} + \frac{\tilde{\Gamma}}{\pi\xi_c} \left(\frac{\xi_c}{2\xi}\right)^{3/2} \left[\frac{\xi}{\xi_c} l_1(\mu) - l_0(\mu)\right] \left[1 - e^{-(\rho/\delta_v)^2}\right]$$

 $\widetilde{\Gamma} = \Gamma / \left(2A_0 r_0^2 \right)$

Hermanns et al., Combustion & Flame (2007)

• Navier-Stokes and energy-mass conservation can be written as: $\rho\left(\frac{\partial c}{\partial \tau} + \mathbf{u} \cdot \nabla c\right) = \nabla \cdot \mathbf{f}(c) \quad \text{ in } \Omega \times (\tau_{n-1}, \tau_n]$

- Navier-Stokes and energy-mass conservation can be written as: $\rho\left(\frac{\partial c}{\partial \tau} + \mathbf{u} \cdot \nabla c\right) = \nabla \cdot \mathbf{f}(c) \quad in \ \Omega \times (\tau_{n-1}, \tau_n]$
- They can be uncoupled using a Semi-Lagrangian scheme to treat convective terms (only $\mathbf{u}^{n-1}, \mathbf{u}^{n-2}$ are needed)

$$\rho^* \frac{\partial \boldsymbol{c}^*}{\partial \tau} = \nabla^* \cdot \mathbf{f}(\boldsymbol{c}^*) \quad \text{in } \Omega \times (\tau_{n-1}, \tau_n]$$

- Navier-Stokes and energy-mass conservation can be written as: $\rho\left(\frac{\partial c}{\partial \tau} + \mathbf{u} \cdot \nabla c\right) = \nabla \cdot \mathbf{f}(c) \quad in \ \Omega \times (\tau_{n-1}, \tau_n]$
- They can be uncoupled using a Semi-Lagrangian scheme to treat convective terms (only $\mathbf{u}^{n-1}, \mathbf{u}^{n-2}$ are needed)

$$ho^* rac{\partial oldsymbol{c}^*}{\partial au} =
abla^* \cdot \mathbf{f}(oldsymbol{c}^*) \qquad \textit{in } \Omega imes (au_{n-1}, au_n]$$

Energy-mass equations are solved with an explicit Runge-Kutta Chebyshev (RCK) scheme in time (second order) and P₂ in space. hⁿ, Yⁿ_i and from them Tⁿ.

Bermejo & Carpio, Appl. Num. Math. (2008)

- Navier-Stokes and energy-mass conservation can be written as: $\rho\left(\frac{\partial c}{\partial \tau} + \mathbf{u} \cdot \nabla c\right) = \nabla \cdot \mathbf{f}(c) \quad in \ \Omega \times (\tau_{n-1}, \tau_n]$
- They can be uncoupled using a Semi-Lagrangian scheme to treat convective terms (only $\mathbf{u}^{n-1}, \mathbf{u}^{n-2}$ are needed)

$$ho^* rac{\partial oldsymbol{c}^*}{\partial au} =
abla^* \cdot \mathbf{f}(oldsymbol{c}^*) \qquad \textit{in } \Omega imes (au_{n-1}, au_n]$$

Energy-mass equations are solved with an explicit Runge-Kutta Chebyshev (RCK) scheme in time (second order) and P₂ in space. hⁿ, Yⁿ_i and from them Tⁿ.

Bermejo & Carpio, Appl. Num. Math. (2008)

- Navier-Stokes is solved with a BDF scheme of 2° order in time and Taylor-Hood P₂/P₁ in space. uⁿ and pⁿ.
- The error indicator η^n is measure for:

$$W(c) = 10^3 Y_H + 10^{-3} (u^2 + v^2)$$

• We compute the steady-state counterflow configuration

- The steady solutions are used as initial conditions for the unsteady calculations
- The numerical solution is validated with COSILAB

Carpio, et. al. Adaptive FEM for combustion problems

$$Y_{F0} = 0.015 \rightarrow A_{ext} = 1300s^{-1}$$

 $Pe_0 = 30, \quad \tilde{\Gamma} = 33, \quad \mathcal{R} = 30$

Carpio et al., 2011

(Loading...)

$$Y_{F0} = 0.015 \rightarrow A_{ext} = 1300s^{-1}$$

 $Pe_0 = 30, \quad \widetilde{\Gamma} = 33, \quad \mathcal{R} = 30$

(Loading...)

$$Y_{F0} = 0.02 \quad
ightarrow \quad A_{ext} = 3200 s^{-1}$$

 $Pe_0 = 60, \quad \widetilde{\Gamma} = 35, \quad \mathcal{R} = 45$

.

Carpio et al., 2011

 $({\sf Loading...})$

$$Y_{F0} = 0.029 \quad \rightarrow \quad A_{ext} = 6000 s^{-1}$$

 $Pe_0 = 40, \quad \widetilde{\Gamma} = 40, \quad \mathcal{R} = 100$

Conclusions

Conclusions

- A novel space-adaptive finite element algorithm has been used to simulate diluted hydrogen-air diffusion-flame/vortex interactions.
- Two different mathematical models have been used here.

Model I(Simple model)

- This model assumes constant physical coefficients and infinitely robust flames.
- This model allows us to analyze several refinement strategies. Anisotropic adaptation shows the better behavior.

Model II(Complex model)

- The mathematical model accounts detailed transport (CHEMKIM approach) and assumes a two-step reduced kinetic mechanism for hydrogen-air combustion.
- The results have been validated quantitatively using steady-state extinction curves and qualitatively against previously published experimental results.

E.T.S. Ingenieros Industriales Universidad Politécnica de Madrid

Ideas to create an adaptive finite element method for combustion problems

Jaime Carpio Huertas

A jointly work with:

<u>Professors:</u> Rodolfo Bermejo Marcos Vera Miguel Hermanns Amable Liñán <u>Students:</u> Pablo Fraile Ángel Fernández

Workshop on mathematical modelling of combustion 23-25/05/2011

