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Physical phenomenon: Diffusion-Flame/Vortex Interactions

Rehm & Clemens (1 99)

@ Turbulent combustion occurs in the form
of laminar flames embedded in thin mixing
layers locally strained by vortices.
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Physical phenomenon: Diffusion-Flame/Vortex Interactions

Rehm & Clemens (1 99

@ Turbulent combustion occurs in the form
of laminar flames embedded in thin mixing
layers locally strained by vortices.

@ A complete description of the phenomenon
requires:

e a good mathematical model.
o an efficient numerical method.

Carpio, et. al. Adaptive FEM for combustion problems



Physical phenomenon: Conservation Equations

%+V~(pu):0
p(g:—l—(u-V)u) =-V +%V~ [ (Vu+VuT)]
p(g—i—th):P:leov q
P@Yi+ V’/f)—PleOV'j;Hzm,- i# Ny

Scales

ro, Ao, pa; D1a, ha, ia
Dimensionless parameters

Aor Aex
Pep = 200 R = Cet, . Pr=072
TA Ao
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Model |

o Model | (Simple model)

o Constant fluid properties. . ‘
o Infinitely fast chemical reaction. - o

z .

] \\\\\\
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Model |: Constitutive Equations

@ Molecular transport models

ji :pD,-Y,-.
a=-A\VT+X_, hiji,
f ! ! Y
Withp:p—:l, H:izl, )\:)\7:1, PDi:pDi:
22 HA paD7ACpa pD1a
and h; = hj/ha,  hi=H?+ Cpa(T' — To)

Adaptive FEM for combustion problems
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Model |: Constitutive Equations

@ Molecular transport models

ji = pD;Yi.
a=-A\VT+X_, hiji,
/ !/ / / /
i P H A p D;
with p = — =1, = =1 x=—" =1, D; = —1.
p pA a A paD7ACpa r pD1a
and hj = hi/ha, h. = h° + Cpa(T' — To)

@ The chemical reaction is assumed to be infinitely fast:

I
F+sO,—(1+s)P + gq (Z;_1 V,‘h,‘) R — o0
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Model |: Constitutive Equations

@ Molecular transport models
Jji=pDiY;.

a=-A\VT+X_, hiji,

/ !/ / / /
i P el A p D
with p = — =1, =2 =1, N=—2 = D; = _
p pA a A paD7ACpa r pD1a
and hj = hi/ha, h. = h° + Cpa(T' — To)

@ The chemical reaction is assumed to be infinitely fast:

I
F+sO,—(1+s)P + gq (Z;_1 V,‘h,‘) R — o0

@ Energy and mass fraction equations introduce the mixture fraction Z
defined as:

_ SYr/Yro— Yo,/ Yo,a+1 : (82 ) = iAZ

i .VZ
1+5 tu 7 Peo

z or

Carpio, et. al. Adaptive FEM for combustion problems



Model I: Original variables

@ Z allows us to define the temperature, mass fractions of oxygen and fuel:

1-7 Yo 1-Z .

T 1+7(1—ZS>’ Yeo 1-2z' '2=0 he=ss
z Yo, z .
—144Z - =1-Z2 fz<z
T 1—&—’yZS7 Yr =0, Youn 7, i < Zs
. 1 sYF,0 qYF,0
with Zg =  S=2F0 andy= 1RO

| Yoo 10T CoaTo(1+ S)
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Model I: Original variables

@ Z allows us to define the temperature, mass fractions of oxygen and fuel:

1-Z7 Yr 1-Z7 .
= — = >
T 1+’Y(1_ZS>7 Yro 1-2. Yo, =0 if Z>Zs
_ 4 _ Yo, . Z g
T—l—&—’yzs7 Ye =0, Yoz,A_l 7, if Z<Zs
o 1 SYFO qYFO
with Zs = , S = —and y= ——F—-—"F——
| Yoo 10T CoaTo(1+ S)

@ The velocity field is given by the incompressible Navier-Stokes equation,
which can be to consider known for Pe > 1

u=¢/2

v=-—7
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Model I: Original variables

@ Z allows us to define the temperature, mass fractions of oxygen and fuel:

1-Z7 Yr 1-Z7 .
= — = >
T 1+’Y(1_ZS>7 Yro 1-2. Yo, =0 if Z>Zs
_ 4 _ Yo, . Z g
T—l—&—’yzs7 Ye =0, Yoz,A_l 7, if Z<Zs
o 1 SYFO qYFO
with Zs = , S = —and y= ——F—-—"F——
| Yoo 10T CoaTo(1+ S)

@ The velocity field is given by the incompressible Navier-Stokes equation,
which can be to consider known for Pe > 1

¢ (n—n (p/5)?
=X, < — e (P/0y
= () () umfi-ao]

T (€2>3/2 [é’l(”) - /o(u)] [1 - e—wm?

Hermanns et al., Combustion & Flame (2007)
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Model I: Problem to solve

n
Z=1 0z 1
Tlmax i ( + u- VZ> = 7AZ
lHQ_H\Z or Peg
. 92 _ . Initial condition:
£ 0
g v 1 1/2
E Zo=1- Eerfc [(Peo/2) n}
0 = Boundary condition:
Air
i Z=0 gmax
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Model |: Numerical method

@ An efficient numerical treatment of multi-scales phenomena can be carried
out with an adaptive method

@ The idea is to adapt the domain of integration to the evolving features of
the solution
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Model |: Numerical method

@ An efficient numerical treatment of multi-scales phenomena can be carried
out with an adaptive method

@ The idea is to adapt the domain of integration to the evolving features of
the solution

At time t,

Compute the

numerical solution
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Model |: Numerical method

@ An efficient numerical treatment of multi-scales phenomena can be carried
out with an adaptive method

@ The idea is to adapt the domain of integration to the evolving features of
the solution

At time t,,

Compute the Estimate the

numerical solution error
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Model |: Numerical method

@ An efficient numerical treatment of multi-scales phenomena can be carried
out with an adaptive method

@ The idea is to adapt the domain of integration to the evolving features of
the solution

At time t,,

Compute the Estimate the Define the new

numerical solution error mesh
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Model |: Numerical method

@ An efficient numerical treatment of multi-scales phenomena can be carried
out with an adaptive method

@ The idea is to adapt the domain of integration to the evolving features of
the solution

At time t,,

Compute the Estimate the Define the new

numerical solution error mesh

Repeat until
n"™ < Tol
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Numerical Method: Compute the numerical solution

@ To solve the problem we use a semi-Lagrangian scheme.
V4 1
[a—ku-VZ—AZ]
or Peo (X (x,7mi7),7)

X(x,Tp; T) characteristic curve backwards in time.
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Numerical Method: Compute the numerical solution

@ To solve the problem we use a semi—Lagrangian scheme.
V4

[‘9 fu-vZ= AZ]

or Peo (X (x,7mi7),7)

X(x,Tp; T) characteristic curve backwards in time.

@ A parabolic equation is obtained

0z 1 : .
o KAZ in [X (x,7n;7), 7] with 7 < 7,

Zp(x,Tn—1) initial condition

where Z(x,7) = Z (X(x,7n; 7),7) and X (X, Tn; ) = X.
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Numerical Method: Compute the numerical solution

@ To solve the problem we use a semi—Lagrangian scheme.
V4

[‘9 fu-vZ= AZJ

or Peo (X (x,7mi7),7)

X(x,Tp; T) characteristic curve backwards in time.

@ A parabolic equation is obtained

0z 1 : .
o KAZ in [X (x,7n;7), 7] with 7 < 7,

Zp(x,Tn—1) initial condition
where Z(x,7) = Z (X(x,7n; 7),7) and X (X, Tn; ) = X.

@ Solution:
@ Convection stage: The aim is calculate fh(x, Tn—1)-
o Compute X (x,7n; Tn—1) by Runge-Kutta(2).
o Compute Zp(x,7h—1) € V| (P2).

Bermejo & Carpio. IMA Journal of Numerical Analysis (2010).
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Numerical Method: Compute the numerical solution

@ To solve the problem we use a semi—Lagrangian scheme.

T € (X (x,7mi7),7)

X(x,Tp; T) characteristic curve backwards in time.

@ A parabolic equation is obtained

0z 1 : .
o KAZ in [X (x,7n;7), 7] with 7 < 7,

Zp(x,Tn—1) initial condition
where Z(x,7) = Z (X(x,7n; 7),7) and X (X, Tn; ) = X.

@ Solution:

@ Convection stage: The aim is calculate Zp(x, 7n—1).
o Compute X (x,7n; Tn—1) by Runge-Kutta(2).
o Compute Zp(x,7h—1) € V| (P2).

Bermejo & Carpio. IMA Journal of Numerical Analysis (2010).

@ Parabolic part: The aim is calculate Zy(x, 7n) = Zn(x, 7n).
o Crank-Nikolson scheme in time.
o Quadratic finite element in space.

Carpio, et. al. Adaptive FEM for combustion problems



Numerical Method: Error estimation |

Local a posteriori error will be computed.

@ The error in the numerical integration is both in time and in space.
However, At = 0.005 and we are only considering spatial adaptation.

@ Spatial error can be evaluated as:

n__.n n
Ns = Tconv + Ndiff —reac

Bermejo & Carpio. Boletin de la Sociedad de Matemética Aplicada (2008).
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Numerical Method: Error estimation |

Local a posteriori error will be computed.

@ The error in the numerical integration is both in time and in space.
However, At = 0.005 and we are only considering spatial adaptation.

@ Spatial error can be evaluated as:

n__.n n
Ns = Tconv + Ndiff —reac
Bermejo & Carpio. Boletin de la Sociedad de Matemética Aplicada (2008).

@ For Py >1 — ngonv > ngiff—reac‘

@ Truncation error is evaluated in a new variable W(x).

——n—1 2

o = | W (X e ma-)) = W ()

L
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Numerical Method: Error estimation Il

@ For this problem the variable W(x) = Z(x)
@ Truncation error:

=3 ([, [ n -2 0o o).

@ We compute the integrals using quadrature points x;.
xg = Fr (&) and X" 1(xg) = y; = Fr(%g).
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Numerical Method: Error estimation Il

@ For this problem the variable W(x) = Z(x)
@ Truncation error:

=3 ([, [ n -2 0o o).

@ We compute the integrals using quadrature points x;.
xg = Fr (&) and X" 1(xg) = y; = Fr(%g).

Xa,.t,:0,,)

o The optimal size A" to satisfy 1" < Tolis
1
Tol c
AP = Ay (") e with o =3

1/(a+1
ZKE'H‘hnK(a )

Carpio, et. al. Adaptive FEM for combustion problems



Isotropic Adaptation: Bisection

The ratio A7Y" /A defines the size of the new
elements of the mesh.
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Isotropic Adaptation: Bisection

The ratio A7Y" /A defines the size of the new
elements of the mesh.

Child 0 Child 1
@ The element K (father) is divided into

two elements (children) by cutting the
refinement edge at its midpoint.
Bisection algorithm

1 1 2 2 0

Father K
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Isotropic Adaptation: Bisection

The ratio Afé’t/AK defines the size of the new

elements of the mesh.
Child 0 Child 1

@ The element K (father) is divided into
two elements (children) by cutting the
refinement edge at its midpoint.
Bisection algorithm

@ A conforming and non-degenerated
triangulation must be always maintain.
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Isotropic Adaptation: Bisection

The ratio Afé’t/AK defines the size of the new

elements of the mesh.
Child 0 Child 1

@ The element K (father) is divided into
two elements (children) by cutting the
refinement edge at its midpoint.
Bisection algorithm

Father K

@ A conforming and non-degenerated
triangulation must be always maintain.
@ Avoid the presence of hanging nodes.
© Maintain the mesh regular in the
refined procedure.
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Isotropic Adaptation: Bisection

The ratio Afé’t/AK defines the size of the new

elements of the mesh.
Child 0 Child 1

@ The element K (father) is divided into
two elements (children) by cutting the
refinement edge at its midpoint.
Bisection algorithm

@ A conforming and non-degenerated
triangulation must be always maintain.
@ Avoid the presence of hanging nodes.
© Maintain the mesh regular in the
refined procedure.

@ A marked element forces to refine those
elements which shear the refinement edge
and only refinements by it are allowed.
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Isotropic Adaptation: Bisection

The ratio Afé’t/AK defines the size of the new
elements of the mesh.

/\‘01

Child 0 Child 1

@ The element K (father) is divided into
two elements (children) by cutting the )
refinement edge at its midpoint.
Bisection algorithm

@ A conforming and non-degenerated
triangulation must be always maintain.
@ Avoid the presence of hanging nodes.
© Maintain the mesh regular in the
refined procedure.

@ A marked element forces to refine those
elements which shear the refinement edge
and only refinements by it are allowed.
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Isotropic Adaptation: Bisection

The ratio Afé’t/AK defines the size of the new
elements of the mesh.

Child 1

@ The element K (father) is divided into
two elements (children) by cutting the
refinement edge at its midpoint.
Bisection algorithm

Father K

@ A conforming and non-degenerated
triangulation must be always maintain.

@ Avoid the presence of hanging nodes.
© Maintain the mesh regular in the
refined procedure.

@ A marked element forces to refine those
elements which shear the refinement edge
and only refinements by it are allowed.
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Isotropic Adaptation: Bisection

The ratio Afé’t/AK defines the size of the new
elements of the mesh.

Child 1

@ The element K (father) is divided into
two elements (children) by cutting the
refinement edge at its midpoint.
Bisection algorithm

Father K

@ A conforming and non-degenerated
triangulation must be always maintain.

@ Avoid the presence of hanging nodes. k
© Maintain the mesh regular in the
refined procedure.

@ A marked element forces to refine those
elements which shear the refinement edge
and only refinements by it are allowed.
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Isotropic Adaptation: 2D

@ In 2D the refinement loop finishes
if the refinement edge is the
longest edge of each element.
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Isotropic Adaptation: 2D

ox10%
| Number of elementos

@ In 2D the refinement loop finishes S
if the refinement edge is the 0.6
longest edge of each element. 04
0.2
T
-0.5 0 0.5 1 15

(Loading...) (Loading...)

Pep =80, T =40



Isotropic Adaptation: 3D

@ In 3D the refinement loop is more
complicated. /} -

L

@ The loop finishes if the macro-triangulation satisfies the Kossaczky
condition (The mesh is derived form hexahedral triangulation and they
are classified in 3 types of elements):
|.Kossaczky. Journal of Computational and Applied Mathematics (1994).

@ An arbitrary mesh needs a pre-adaptation divided each tetrahedron into
twelve tetrahedra.

@ Use a mesh generator satisfying the required conditions:
R. Montenegro, J.M. Cascén, J.M. Escobar, E. Rodrguez, G. Montero. Institute for
Intelligent Systems and Numerical Applications in Engineering (2009).

Carpio, et. al. Adaptive FEM for combustion problems



Isotropic Adaptation: 3D

Tridimensional simulations

0.8X 108
Number of elemen
0.6
0.4
0.2
T
—8.5 0 0.5 1 15

(Loading...)
(Loading...)

Pey =80, T =40
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Anisotropic versus Isotropic Adaptation: 2D

@ With the bisection algorithm mesh elements are adjusted only in size.
@ In some cases the solution shows directional features.

@ In these situations, anisotropic meshes might provide better results.
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Anisotropic versus Isotropic Adaptation: 2D

@ With the bisection algorithm mesh elements are adjusted only in size.
@ In some cases the solution shows directional features.

@ In these situations, anisotropic meshes might provide better results.

@ The size but also the shape and
orientation of the mesh must be
defined. Metric tensor.

Carpio, et. al. Adaptive FEM for combustion problems



Anisotropic Adaptation: 2D

The metric tensor parameters depend on the a posteriori error estimator:

J 1/2
1Z - /K(Z)HL2(K) < CIK| ZS"’K (riTKGK(Z)r"’K)]

i=1

with G(Z) Hessian matrix of the solution Z where \; x = s; k |K\1/d
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Anisotropic Adaptation: 2D

The metric tensor parameters depend on the a posteriori error estimator:

J 1/2
1Z - /K(Z)HL2(K) < CIK| ZS"’K (riTKGK(Z)r"’K)]

i=1

with G(Z) Hessian matrix of the solution Z where \; x = s; k |K\1/d

@ The optimal shape and orientation of the triangle are given by:

J 1/d
. ‘ o
Sik = 8i.K 8d+1—i.K
i=1

ST
Vi k

lot1i—ik

where |; and g; k is the eigenvector and eigenvalue of the Hessian matrix

G(2).
@ The size of the triangles is given by A;”t computed before.

@ Mesh generator code used in this work:
F. Hecht, ‘BAMG: Bidimensional Anisotropic Mesh Generator’

Carpio, et. al. Adaptive FEM for combustion problems



Anisotropic Adaptation: 2D

Simulation with anisotropic elements: Axisymmetric configuration

(Loading...)
(Loading...)

Pey =80, T =40
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Anisotropic Adaptation: 2

25 ANSOUORICHT, SouopichE Anisotropic T. ‘ Isotropic T.
6

Number of elements

9000

8000

7000

6000

5000

4000

3000

2000

N
%.\:\AWVI;/ A
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Model II: Constitutive Equations

M 1 I -t
a M= 5 (s M)
I N To
=-AVT + hiji, A= —, hi =h./h
a Z"Zl ! pADTANA iz
/D/
i=pYi (VP VT Vo), D=L
pD1a
. . . D Di
Ordinary diffusion Vi = —YVX,-
D;6; VT
Thermal diffusi vi= """
ermal diffusion ; X T
Correction velocity V.=— z (Y,-V,-D + Y,-V,-T)

where h, 1/, X', D! and 6; are functions of the local thermodynamical state
of the mixture (Kee et al., CHEMKIN (1983)).
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Reaction A n T.[K]

1. H+0. =0H+0 kr 35210 —0.700 8590

., ky  7.04-10" —0.264 72

i m; 2. Hy+0 = OH+H ky  5.06-10* 2.670 3166

mi= —— ky  3.03-10% 2.633 2433

pAAext 3. Ha+OH = H,O+H ky  1.17-10° 1.300 1829

ky  1.29-10% 1.196 9412

4. H+02+Ms — HO24+Ms ko 5.75-10"  —1.400 0

| koo 4.65-10'2 0.440 0

5. HO2+H — OH+OH 7.08 - 10" 0 148

3H + Oo= 2H + 2H,0 6. HO>+H — Hy+0, k;  1.66-10 0 414
f

ky  2.69-10%  0.36 27888

2Hl H 7. HO24+OH — Hy040; 28910 0 —250

— M2 8. H+OH+Ms — HoO+Ms  ky  4.00-10** —2.0 0

ky  1.03-10% —1.75 59675

9. H+H+Mo — Hao+My ks 1.30-10"  —1.0 0

San Diego Mechanism (2005)

w = kir Co, G — kibCon Co + ksr Chi Cro,
wi= kar Cpm, Co, Cri + ks Cpy Cri Cont + kor Ci Cri Chi

Mauss et al. (1993)
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Model |I: Boundary Conditions

Boundary conditions are taken from the steady unperturbed counterflow con-
figuration

u=pp'(E/2,m0 — 1)

" h—hp/ha=Yu, —Ypo=0

Vi = Yo, = 0
Thnax
| et Qe E;nax/8+(n7770)2/2 no <,
3 7P (17170, masd grz"ax/s , 0<n<mno,
c v Emax/8+1°/2 n <0.
g o€
é q-n=0
” ji-n=0
0 ¢
Air
Tmin
u=(&/2,-n) Smax
h=1 Vi, =Yg =0
Yo, =Yo, A

Carpio, et. al. Adaptive FEM for combustion problems



Model II: Initial Conditions

Steady solution

|
I
I
b
ol
I
I
|
I
I
I
|
I
5 | )
% 0 5
U = Uss
V = Vss
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Model II: Initial Conditions

Steady solution + vortex ring

3/2 7 .
. USS_WL& (gg) (77 gcnc> h(y) [1 _ o= (p/8) ]

_ r(&\?T¢ —(p/6)?
v = VSSJFTEC <2£> {fcll(u) = lo(u)] [1 —e P ]

T =T/(24013)

Hermanns et al., Combustion & Flame (2007)

Carpio, et. al.
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Numerical Method: Compute the numerical solution

o Navier-Stokes and energy-mass conservation can be written as:

p(ZC+U~Vc> =V -f(c) in QX (Th-1,Tn]
=

Carpio, et. al. Adaptive FEM for combustion problems



Numerical Method: Compute the numerical solution

o Navier-Stokes and energy-mass conservation can be written as:

p(ZC+U~Vc> =V -f(c) in QX (Th-1,Tn]
=

@ They can be uncoupled using a Semi-Lagrangian scheme to treat

convective terms (only u"~! u"~2 are needed)

Loc*
P or

=V*-f(c*) inQx(Th_1,7n]

Carpio, et. al. Adaptive FEM for combustion problems



Numerical Method: Compute the numerical solution

o Navier-Stokes and energy-mass conservation can be written as:

p(?c+u~Vc> =V -f(c) in QX (Th-1,Tn]
=

@ They can be uncoupled using a Semi-Lagrangian scheme to treat

convective terms (only u"~! u"~2 are needed)
oc* .
p*a— =V*-f(c*) inQx(Th_1,7n]
-

@ Energy-mass equations are solved with an explicit Runge-Kutta
Chebyshev (RCK) scheme in time (second order) and P, in space. h", Y/
and from them T".

Bermejo & Carpio, Appl. Num. Math. (2008)
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Numerical Method: Compute the numerical solution

o Navier-Stokes and energy-mass conservation can be written as:

p(ZC+U~Vc> =V -f(c) in QX (Th-1,Tn]
=

@ They can be uncoupled using a Semi-Lagrangian scheme to treat

convective terms (only u"~! u"~2 are needed)
oc* .
p*a— =V*-f(c*) inQx(Th_1,7n]
-

@ Energy-mass equations are solved with an explicit Runge-Kutta
Chebyshev (RCK) scheme in time (second order) and P, in space. h", Y/
and from them T".

Bermejo & Carpio, Appl. Num. Math. (2008)

@ Navier-Stokes is solved with a BDF scheme of 2° order in time and
Taylor-Hood P>/Py in space. u" and p".

@ The error indicator 1" is measure for:
W(c) = 103y + 1073(u? + v?)
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@ We compute the steady-state counterflow configuration
o The steady solutions are used as initial conditions for the unsteady
calculations
e The numerical solution is validated with COSILAB

FEM for combustion problems
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Numerical Results: Case 2
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Numerical Results: Case 3
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Conclusions

Conclusions

@ A novel space-adaptive finite element algorithm has been used to
simulate diluted hydrogen-air diffusion-flame/vortex interactions.

@ Two different mathematical models have been used here.

Model I(Simple model)
@ This model assumes constant physical coefficients and infinitely robust
flames.

@ This model allows us to analyze several refinement strategies.
Anisotropic adaptation shows the better behavior.

Model 1l(Complex model)

@ The mathematical model accounts detailed transport (CHEMKIM
approach) and assumes a two-step reduced kinetic mechanism for
hydrogen-air combustion.

@ The results have been validated quantitatively using steady-state
extinction curves and qualitatively against previously published
experimental results.

Carpio, et. al. Adaptive FEM for combustion problems
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