

The CIUDEN Center for Technological Development of CO2 Capture and Transport. Opportunities for mathematical modelling

Pedro Otero Technical Director Jesus Ramos Lage Technical Advisor

Santiago de Compostela, May 23, 2011

- Fundación Ciudad de la Energía (CIUDEN).
- CIUDEN s Technology Development Centre for CO₂ Capture: Technical characteristics.
- R&D&D activities.
- Applied research results: Modelling PC Boiler.

Fundación Ciudad de la Energía (CIUDEN).

- CIUDEN s Technology Development Centre for CO₂ Capture: Technical characteristics.
- R&D&D activities.
- Applied research results: Modelling PC Boiler.

Fundación Ciudad de la Energía: CIUDEN

An initiative of the Spanish Administration

Attributes

Our overarching objective

Our three-pronged strategy

Capture	 To validate close-to-market and emerging technologies for application at commercial scale 				
Transport	 To obtain technical criteria for design, management and safe operation of CO₂ pipelines through long-term runs 				
Storage	 To develop technologies and processes for injection and monitoring in saline aquifers to support industrial-scale activities 				

ר ק

Main characteristics

esco

DESIGNED FOR

OF UNITS AND SYSTEMS

MODULARITY

FOR SIMULTANEOUS OR SEPARATE OPERATION

FULL

FUELS

RANGE

CONCEIVED FOR EXTENSION TO ACCOMMODATE TECHNOLOGICAL PROGRESS

FLEXIBILITY

OF OPERATION UNDER WIDE RANGE OF CONDITIONS

Basic data

Commissioning on going!

- Fundación Ciudad de la Energía (CIUDEN).
- CIUDEN s Technology Development Centre for CO₂ Capture: Technical characteristics.
- R&D&D activities.
- Applied research results: Modelling PC Boiler.

es.CO₂ Capture Centre: PFD

1

es.CO₂ Capture Centre: North bird's eye view

es.CO₂ Capture Centre: Technical data summary

FUEL PREPARATION UNIT

- Crusher: 15 t/h
- Crushed coal silos: 240 t
- Mill: 5 t/h

PULVERIZED COAL BOILER (PDB)

- 20 MWt: 3,4 t/h pulverized coal
- 4 horizontal burners + 2 vertical burners
- Biomass co-combustion 25%
- Steam 30 bar & 420°C
- 6,6 t/h O₂

CIRCULATED FLUIDIZED BOILER (CFB)

- 30 MWt: 5,5 t/h crushed coal
- Biomass co-combustion
- De-SOx.
- Steam 30 bar & 250°C
- 8,8 t/h O₂

DEPURATION TRAIN

- Cyclon.
- DeNOx (SCR): < 40 ppmv NO_X
- Filter: < 15 mg/Nm³
- DeSOx > 95%
- Flow rate of design: 23.215 Nm³/h

COMPRESSION AND PURIFICATION UNIT

- Compressors.
- Dryers.
- Cold box, including elimination of inerts.

UTILITIES

- •O₂: 10,6 t/h
- •CO2: 3 t/h (inertización)
- Electric power: currently, 4 MVA; at most, 10 MVA
- Natural gas: 1.500 Nm³/h

STAFF

- 16 R&D department.
- 20 Operation & Maintenance.
- 3 Administration.

SITE AREA

BUILDINGS

65.000 m²

Technical: 3.500 m²
 Industrial: 1.300 m²

1

es.CO₂ Capture Centre: South bird's eye view

PFD fuel preparation system

Fuel preparation system

Size (m)	24 x 7.6 x 4.5
Burners	4 horizontal burners 2 vertical burners Biomass feeding system
MWth HHV max oxy mode	20
O ₂ (kg/h)	6600
FGR (kg/h)	17900
Flue gas flow (kg/h)	26400
Coal flow rate (kg/h)	3350
Steam (t/h)	25
P(bar) / T (C)	30 / 420

 \mathbf{C}

CFB Boiler

Furnace Dimensions (m)	20x2.9x1.7
MW _{th} max oxycombustion	30
O ₂ consumption (kg/h)	8775
Flue gas recycle (kg/h)	25532
Flue gas (kg/h)	28800
Coal consumption (kg/h)	5469
Limestone feed (kg/h)	720
Steam (t/h)	47.5
P(bar) / T(C)	30 / 250

<u>ר</u>י

ר י

Flue gas cleaning

Gasifier

Technology	Bubbling fluidised bed
MW _{th} max	3
Oxidant	Air
Biomass flow rate (t/d)	15
P(barg)	0,3
T (C)	800
Efficiency (cold gas basis)	98% (75%)
Footprint (m ²)	90

Technical buildings

ר ק

Control Room

ר י

The first milestone

CIUDEN LIGHTS THE FIRST FIRE IN THE CO2 CAPTURE CENTRE 2011-04-20 12:31:59

Ponferrada. "Saturday 16 April, at 7:30 pm, a stable and simultaneous ignition of the four burners on the pulverised coal (PC) boiler was carried out, thus reaching this important milestone in the commissioning of the Technology Development Centre for CO2 Capture,

- Fundación Ciudad de la Energía (CIUDEN).
- CIUDEN s Technology Development Centre for CO₂ Capture: Technical characteristics.
- R&D&D activities.
- Applied research results: Modelling PC Boiler.

CIUDEN s vision for CCS technology development

ר ק

Current R&D Programme targets

Target # 1: Validation and scaling-up of oxyPC, oxyCFB, FGD and CPU technologies

Target # 2 : Integration and optimization tests of the full process to produce a CO₂ stream ready for transport and storage

The FLEXIBURN CFB project

Objective	 Demonstration of flexible high-efficiency CFB combustion technology in air and oxy-modes for CCS 				
Ciuden s Tasks	 Testing for safe, stable and high-efficiency operation and performance of the <u>30 MWth CFB boiler</u> Test parameters; fuels, T , oxidant and split, fluidization velocity, FGR, sorbents, bed inventory, SO₂ abatement 				
Partners 14	 Industry-driven project Technologists, utilities, universities and research institutions 				

http://www.vtt.fi/sites/flexiburncfb/index.htm

The OXY CFB 300 Project Phase I

Co-financed by the European Union European Energy Programme for Recovery

es

Objective	 Technology development for CO₂ oxy capture, inland transport and storage in saline aquifers supporting FID of a demo 300 MW CCS oxyCFB PS 			
Ciuden s Tasks	 Integrated TDP for CO₂ capture at 1:30 scale Transport TDP for based on a closed-loop test rig 5 km long Storage TDP in a saline aquifer for advanced injection and monitoring 			
Partners 3	 Alliance of utility, technologist and CIUDEN Target: availability of the technology 			

http://www.compostillaproject.es/

The RELCOM project

Objective	 R&D&D activities for reliable full-scale deployment of oxy- PC firing 					
Ciuden s	 Demonstration tests at the <u>20MWth PC oxy-boiler</u> using wall firing configuration 					
Tasks	 Measurements : operational and boiler performance parameters , in/outlet gas streams using advanced instrumentation 					
Partners 13	 Balanced cooperation of research bodies, utilities and industry Outcome:designs for both retrofit and "new build" oxy-PC plants 					

The MACPLUS project

Objective	 Develop and test full-scale prototypes of components to improve performance and reliability of CCS PS 			
Ciuden s Tasks	 Testing of advanced refractories for oxyfiring under erosive conditions at the <u>CFB boiler</u> Demo tests of fire/steam side protective coatings for operation under oxycombustion environments 			
Partners 24	 Equipment and materials manufacturers, utilities and research institutions 			

The O2GEN project

UNDER EVALUATION

Objective	 Demonstrate the concept of the 2nd generation oxyfuel PS to reduce the efficiency penalty of CO₂ capture down to 5%
Ciuden s Tasks	 Testing at high O₂ levels for optimum operating conditions Testing of suitable materials for boiler components CPU optimization to improve efficiency and operability with high oxyfuel flue gas
Partners 9	 Manufacturers, utilities and state of the art facilities Tasks focused on ASU, CFB and CPU

R&D Schedule

		2009	2010	2011	2012	2013	2014	2015
FLEXI-BURN CFB	DURATION							
	OP WEEKS				8			
	DURATION							
OAT CI B 300	OP WEEKS				8			
	DURATION							
RELCOM	OP WEEKS					2	2	
	DURATION			-				
MACFLUS	OP WEEKS					2 🗖	3	
	DURATION					I		
OZGEN	OP WEEKS						3	3
ECCSEL	DURATION				1 <u></u>			
DDIOK	DURATION							
DRION	OP WEEKS						8	

TEST CAMPAIGN

Under evaluation

Related to currently available technologies at es.CO₂

HIGH O ₂ OXYCOMBUSTION	 PF and CFB boiler testing for with increased O₂ concentration Combustion characteristics in high O₂ concentration Design and heat managing schemes
SULPHUR COMPOUNDS	 Knowledge and management of S chemistry for solid fuels
CARBON-NEGATIVE SYSTEMS	 Sustainable biomass oxy-co-combustion Indirect biomass co-combustion via gasification
HYBRID SYSTEMS	 Partial oxycombustion + postcombustion

R&D Upcoming Areas - II

	Based on 2 nd Generation Technologies
CHEMICAL LOOPING	 Test at MWth scale of chemical looping applied to coal
CO ₂ PURITY	 Second generation CPU performance and impact of CO₂ quality on transport and storage behaviour Cost-efficient solutions to match applicable CO₂ standards
CCS APPLICATION ACROSS CARBON INTENSIVE SECTORS	 Cement industry: oxykilns Refineries

Further R&D into next-generation technologies must be initiated immediately to enable rapid and wide deployment post-2020

ZEP s Strategic Deployment Document II

- Fundación Ciudad de la Energía (CIUDEN).
- CIUDEN s Technology Development Centre for CO₂ Capture: Technical characteristics.
- R&D&D activities.
- Applied research results: Modelling PC Boiler.

Advantages to model in es.CO₂

Semi- industrial size	 Results will be particularly valuable to scale-up. Easy to operate.
Flexibility	 Process units designed to carry out testing campaings.
Monitoring	 More points to measure process variables (compared with a commercial plant). Increase of possibilities for validation of model results.

Simplified geometry

PC BOILER

BURNER

PC Furnace Results (I): Temperature profiles

ሰ

PC Furnace Results (II): CO₂ concentration

AIR-mode

OXY-mode

PC Furnace Results (III): O₂ concentration

AIR-mode

OXY-mode

PC Burner Results (IV): Secondary oxidant

Thanks for your attention