DUED

5th Meeting of the Spanish Section of the Institute of Combustion

BURNING VELOCITY OF CONCAVE (NEGATIVELY STRETCHED) FLAME TIPS: EXPERIMENTS AND MODELING

G. Garcia-Soriano, J.L. Castillo, P. L. Garcia-Ybarra UNED, Depto. Física Matemática y de Fluidos, Madrid, Spain

F. Higuera UPM-ETSIA, Depto. Motopropulsión y Termofluidodinámica, Madrid, Spain

Santiago de Compostela, May 23 - 25, 2011

CONTENT

- Introduction and Motivation.
- Numerical techniques
- Experimental facility
- .Gas velocity field.
- Flame tomography and mean curvature
- Flame speed and stretch
- Conclusions.

CONTENT

- Introduction and Motivation.
- Numerical techniques
- Experimental facility
- .Gas velocity field.
- Flame tomography and mean curvature
- Flame speed and stretch
- Conclusions.

FLAME DYNAMICS

Cellular flame (IRPHE, Marseille)

(CCSE – Berkeley)

FLAME DYNAMICS

LINEAR FLAME DYNAMICS

LINEAR FLAME DYNAMICS

Markstein number = $\frac{\text{Markstein length}}{\text{flame thermal thickness} (\lambda / \rho c_p U_L)}$

Activation Energy Asymptotic Methods: $Ma = \frac{1}{\gamma}J + \beta(Le-1)\frac{1-\gamma}{2\gamma}D$ (Clavin & G-Y, 1983)

$$J = \frac{\gamma}{1 - \gamma} \int_{0}^{1} h(\theta) \frac{1}{1 + \theta \gamma / (1 - \gamma)} d\theta$$
$$D = -\frac{\gamma}{1 - \gamma} \int_{0}^{1} h(\theta) \frac{\ln \theta}{1 + \theta \gamma / (1 - \gamma)} d\theta$$

$$\theta \equiv (T - T_u) / (T_b - T_u)$$
$$\beta \equiv E_a / RT_u$$
$$\gamma \equiv (T_b - T_u) / T_b$$
$$h(\theta) \equiv \frac{\lambda / c_p}{(\lambda / c_p)_u}$$

GENERALIZED RELATION (Clavin & Joulin, 1988)

Different effects have different Markstein lengths

$$\frac{U}{U_L} - 1 = \mathscr{L}_C \nabla \cdot \boldsymbol{n} + \mathscr{L}_s \frac{1}{U_L} \boldsymbol{n} \cdot \nabla \boldsymbol{u} \cdot \boldsymbol{n}$$

Linear theory leads to: $\mathscr{L} = \mathscr{L}_c = \mathscr{L}_s$

LAMINAR JET BURNER (BUNSEN) FLAME

R. W. Bunsen (1811-99)

PRINCIPAL CURVATURES OF A JET FLAME

DUED

1. Curvature of the 2-D section:

$$z_f = z(r), \qquad R_1 = -\frac{(1+z'^2)^{3/2}}{z''}$$

$$\sin\theta = \frac{1}{\sqrt{1+{z'}^2}}, \ \cos\theta = -\frac{z'}{\sqrt{1+{z'}^2}}$$

2. Curvature due to axial symmetry: Moivre's formula: $R_2 = \frac{r}{\cos \theta}$

CURVED (NON STRAINED) JET FLAME

SHAPE OF A CURVED JET FLAME

$$\frac{U_n}{U_L} - 1 = \mathscr{L}\left(\frac{1}{R_1} + \frac{1}{R_2}\right)$$

$$z' = \frac{dz}{dr} = \frac{d(z/\mathscr{R})}{d(r/\mathscr{R})} = \frac{d\zeta}{d\rho} = \dot{\zeta}$$

$$\ddot{\zeta} = \left(\sqrt{1 + \dot{\zeta}^2} - \frac{1}{\sin\theta_{\infty}} - \frac{\dot{\zeta}}{\rho}\right) (1 + \dot{\zeta}^2)$$

$$\zeta(0) = 0$$

$$\dot{\zeta}(0) = 0$$

$$\dot{\zeta}(0) = 0$$

DUED

SHAPE OF A CURVED JET FLAME

CURVED AND STRAINED JET FLAME

$$\frac{\boldsymbol{v}_{g}}{\boldsymbol{U}_{L}} = \left(-\frac{G}{2}\rho, \ 0, \ \frac{\boldsymbol{v}_{tip}}{\boldsymbol{U}_{L}} + G\zeta\right) \Rightarrow \boldsymbol{n} \cdot \left(\nabla \boldsymbol{v}_{g}\right) \cdot \boldsymbol{n} = G\frac{1 - \dot{\zeta}^{2}/2}{1 + \dot{\zeta}^{2}}$$
$$\frac{U_{n}}{\boldsymbol{U}_{L}} = -\left(\frac{\boldsymbol{v}_{g}}{\boldsymbol{U}_{L}} \cdot \boldsymbol{n}\right) = \frac{G\left(\zeta + \rho\dot{\zeta}/2\right) + \boldsymbol{v}_{tip}/\boldsymbol{U}_{L}}{\sqrt{1 + \dot{\zeta}^{2}}}$$

$$\begin{cases} \ddot{\zeta} = \left[\sqrt{1 + \dot{\zeta}^2} - \frac{1}{\sin \theta_\infty} - \frac{\dot{\zeta}}{\rho} + G\left(\frac{1 - \dot{\zeta}^2/2}{\sqrt{1 + \dot{\zeta}^2}} - \frac{\rho \dot{\zeta}}{2} - \zeta - 1\right) \right] (1 + \dot{\zeta}^2) \\ \zeta(0) = 0 \\ \dot{\zeta}(0) = 0 \end{cases}$$

UTED SHAPES OF A CURVED AND STRAINED JET FLAME

UTED SHAPES OF A CURVED AND STRAINED JET FLAME

CONTENT

- Introduction and Motivation.
- Numerical thechniques
- Experimental facility
- Flame tomography and mean curvature.
- Gas velocity field.
- Flame speed and stretch
- Conclusions.

Numerical thechniques

• Assumptions:

DUED

- Ideal inviscid gas
- Axisymmetric
- Irreversible Arrhenius reaction
- High activation energy

reaction layer : infinitely thin free boundary

- l_e=O(1) => reaction region non affected by curvature
- Quasi-isobaric low Mach number approximation
- No gravity

DUED

AEA JUMPS LOCATE THE REACTIVE FRONT

CONTENT

- Motivation.
- Numerical techniques
- Experimental facility
- .Gas velocity field.
- Flame tomography and mean curvature
- Flame speed and stretch
- Conclusions.

Experimental facility

DUED

LAMINAR JET BURNER

OIL DROPLET VISUALIZATION

PIV DIAGNOSTICS SYSTEM

PARTICLES

PARTICLES

CONTENT

- Motivation.
- Numerical techniques
- Experimental facility
- Gas velocity field.
- Flame tomography and mean curvature.
- Flame speed and stretch
- Conclusions.

DUED

PIV VELOCITY PROFILES IN A BUNSEN FLAME

VELOCITY ALONG THE SYMMETRY AXIS

 $U \equiv U_n / U_L$

CONTENT

- Motivation.
- Experimental facility
- Numerical thechniques
- Flame tomography and mean curvature.
- Gas velocity field.
- Flame speed and stretch
- Conclusions.

Minimal spline

blue: detected flame front red: detected flame front

SHAPE OF THE REACTIVE SHEET ($\gamma = 6, U_n/U_L = 4.15$)

CONTENT

- Motivation.
- Experimental facility
- Numerical techniques
- Flame tomography and mean curvature.
- Gas velocity field.
- Flame speed and stretch
- Conclusions.

DUED

U_n vs. S – Linear correlation (flame tip, $\phi = 1.43$)

UTED U_n /UI-1vs. S/Ul – Linear correlation (flame tip, $\phi = 1.40$)

DUED

(U_n/U_L-1) vs. S/U_L (flame tip, $\phi = 1.43$)

DULED

$$\gamma$$

$$\triangle = 3$$

$$\nabla = 5$$

$$\bigcirc = 6$$

$$\square = 7$$
Color= Experiments

EXTENDED MARKSTEIN RELATION

Flame height h (mm)

BURNING VELOCITY *vs.* **CURVATURE & STRAIN RATE** (flame tip, $\phi = 1.43$)

Two-variable regression:

$$\frac{U_n}{U_L} - 1 = \mathscr{L}_K (\nabla \cdot \boldsymbol{n}) + \mathscr{L}_G \left(\frac{1}{U_L} \boldsymbol{n} \cdot \nabla \boldsymbol{u} \cdot \boldsymbol{n} \right)$$

BURNING VELOCITY *vs.* **STRETCH COMPONENETS** ($\phi = 1.40$)

DUED

BURNING VELOCITY *vs.* **STRETCH COMPONENETS** ($\phi = 1.40$)

DUED

CONTENT

- Motivation.
- Experimental facility.
- Flame tomography and mean curvature.
- Discussion of results
- Conclusions.

CONCLUSIONS

• A PIV-based system has been set-up for the simultaneous measurement of the local burning velocity of premixed flames and the flame stretch due to the flame front curvature and the incoming flow strain rate.

• In Bunsen flame tips, these measurements allow the indirect determination of the Markstein length, according to the linear theory (Clavin & Joulin, 1983).

• The experimental results confirm the existence of two different values of the Markstein length when the flame strain rate becomes large. However, one single value of the Markstein length remains even for moderate values the flame curvature. The linear relation becomes less accurate when the stretch is very large, and a break down is observed, probably related to the transition rounded-tip to slender-tip.