i-Math Workshop on Mathematical Modelling of Combustion May 23 - 25, 2011, Universidade de Santiago de Compostela, SPAIN

Technological and Theoretical Challenges in Oxy-Fuel Combustion

김 종 수 (Jong Soo Kim)

Global Environment Team Korea Institute of Science and Technology

Climate Change & Combustion

Two Outstanding Issues

♦Oxy-Fuel Combustion for CCS ▶CCS = CO₂ Capture & Storage

Climate Forcing By Black Carbon Particularly on the Arctic Climate

Numerical Modelling ?

- Numerical Prediction
- Numerical Model
- Numerical Computation
- Numerical Simulation
- *CFD

Are They the Same ?

What is Modelling ?

- Modelling
 - ➢ Simplify
 - The Complex Real-World Problems
 - ➤To a Tractable Form
 - ➤While Maintaining the Physical Essence
- Modelling Procedure
 - ➢ Physical Modelling
 - Mathematical (or Experimental) Modelling
 - ➢Numerical (or Experimental) Realization

Contents

What is Oxy-Fuel Combustion ?

• Applications

Physical Essence of Oxy-Fuel Combustion

• Theoretical Challenges

Mathematical Modelling Issues

Technological Challenges

What is Oxy-Fuel Combustion ?

Stoichiometry \rightarrow Oxy-Fuel : CH₄ + 2O₂ \rightarrow CO₂ + 2H₂O \rightarrow Air-Fuel : CH₄ + 2(O₂+3.76N₂) \rightarrow CO₂ + 2H₂O + 7.52N₂

Higher Flame Temperature (~ 3000K)

Improved Heat Transfer & Thermal Efficiency

- Enhanced Heat Transfer ← High Temperature & Concentrations of CO₂ and H₂O
- Less Energy-Loss through Exhaust Gas
- Need to Overcome the Oxygen Production Cost

Significant Increase in Flame Stability

Easy to Capture CO₂

Oxy-Fuel Combustion

♦ Where do we use it ?

Application	Why ?
Industrial Furnace	 Higher Thermal Efficiency Higher Productivity
Gasification or Fuel Reforming	 Rich Oxy-Fuel Combustion Maintaining the Gasifying Reaction
Oxy-PC Combustion with FGR	 CO₂ Capture <u>Retrofitting</u> the Existing PC Power Plant
Oxy-PC Combustion w/o FGR	 CO₂ Capture High Performance CCS-Capable PC Power Plant Only Conceptually Exists

OFC for Industrial Furnace

- ✤ Mainly For Metal Heating & Glass Melting
- ✤ High Exit Temperature > 1000K
 - \succ Air-Fuel Flame : T_f < 2000K → η < 50%
- Oxy-Fuel Flame Temperature ~ 3000K : η ~ 70%
- Low NOx, Higher Productivity and Quality
- Enough to Cover the Oxygen Cost

Source : Oxygen-Enhanced Combustion (CRC Press)

OFC Gasifier

Elcogas IGCC Gasifier

♦ Gasification by Partial Oxidation > C + $\frac{1}{2}$ O₂ → CO

Rich Oxy-Fuel Combustion

Pure Oxygen to Maintain the Reaction Temperature

OFC for PC Power Plant

Physical Essence

Chemical Kinetics

Flame Structure

Heterogeneous Combustion

Chemistry

•••	Radica	ls

- Chain Branching
 - ♦ 1 : $O_2 + H \rightarrow OH + O$
- Radical Recombination

$$\blacklozenge 5 : O_2 + H + M \rightarrow HO_2 + M'$$

- Crossover Temperature
 - $\bullet \ \omega_1 = \omega_5$
- Methane oxidation
 - Fuel decomposition
 - $\blacklozenge CH_4 + 1.5O_2 \rightarrow CO + H_2O$
 - Dominated by reaction #1
 - ♦ 11 : $CH_4 + H \rightarrow CH_3 + H_2$
 - CO oxidation
 - \diamond CO + 0.5O₂ \rightarrow CO₂
 - Dominated by reaction #10
 - ◆ 10 : CO +OH \rightarrow CO₂ + H

	Step		Reac	tion	<i>B</i> *	α*	E^*	
	1	$O_2 + H$	\rightarrow	OH + O	2.00 10 ¹⁴	0.00	70.30	-7
/	1b	OH + O	\rightarrow	$O_2 + H$	1.40 1013	0.00	3.20	_
	2	$O + H_2$	\rightarrow	H + OH	1.50 107	2.00	31.60	
	2b	H + OH	\rightarrow	$O + H_2$	6.73 10 ⁶	2.00	22.35	
	3	$OH + H_2$	\rightarrow	$H + H_2O$	1.00 10 ⁸	1.60	13.80	
	3b	$H + H_2O$	\rightarrow	$OH + H_2$	4.62 108	1.60	77.50	
	4	OH + OH	\rightarrow	$H_2O + O$	1.50 109	1.14	0.42	
	4b	$H_2O + O$	\rightarrow	OH + OH	1 49 10 ¹⁰	1.14	71.14	
	5**	$H + O_2 + M$	\rightarrow	$HO_2 + M$	2.30 1018	-0.80	0.00	~ 1
1	6	$HO_2 + H$	\rightarrow	OH + OH	1.50 1014	0.00	4.20	
/	7	$HO_2 + H$	\rightarrow	$H_2 + O_2$	2.50 1013	0.00	2.90	
	8	$HO_2 + H$	\rightarrow	$H_2O + O$	3.00 1013	0.00	7.20	
	9	$HO_2 + OH$		H20+02 -	2.00 +013 -	- 0.00-	7.20	
	10	CO + OH	\rightarrow	$CO_2 + H$	4.40 10 ⁶	1.50	-3.10	1
	10b	- CO ₂ + H	-	$CO \rightarrow OH$	-4 .96 10⁸	1.50	-89.71	
1	11	$CH_4 + H$	\rightarrow	$H_2 + CH_3$	2.20 10 ⁴	3.00	36.60	
	11b	$H_2 + CH_3$	\rightarrow	$CH_4 + H$	8.83 10 ²	3.00	33.53	
	12	$CH_4 + OH$	\rightarrow	$H_2O + CH_3$	$1.60 \ 10^{6}$	2.10	10.30	
	13	$CH_3 + O$	\rightarrow	$CH_2O + H$	7.00 1013	0.00	0.00	
/	14	$CH_3 + OH$	\rightarrow	$\mathrm{CH}_{2}\mathrm{O} + \mathrm{H} + \mathrm{H}$	9.00 1014	0.00	64.80	
	15	$CH_3 + OH$	\rightarrow	$CH_2O + H_2$	8.00 1012	0.00	0.00	
	16***	$CH_3 + H$	\rightarrow	CH ₄	6.00 1016	-1.00	0.00	
	17	$CH_2O + H$	\rightarrow	$CHO + H_2$	2.50 1013	0.00	16.70	
	18	CH ₂ O+OH	\rightarrow	$CHO + H_2O$	3.00 1013	0.00	5.00	
	19	CHO + H	\rightarrow	$CO + H_2$	$2.00 \ 10^{14}$	0.00	0.00	
	20	CHO + OH	\rightarrow	$CO + H_2O$	1.00 1014	0.00	0.00	
	21	$CHO + O_2$	\rightarrow	$CO + HO_2$	3.00 1012	0.00	0.00	
	22**	CHO + M	\rightarrow	CO + H + M	7.10 1014	0.00	70.30	
	23	$CH_3 + H$	\rightarrow	$CH_2 + H_2$	$1.80 \ 10^{14}$	0.00	63.00	
	24	$CH_2 + O_2$	\rightarrow	$\rm CO_2 + H + H$	6.50 10 ¹²	0.00	6.30	
	25	$CH_2 + O_2$	\rightarrow	CO + OH + H	6.50 1012	0.00	6.30	
	26	$CH_2 + H$	\rightarrow	$CH + H_2$	4.00 10 ¹³	0.00	0.00	
	26b	$CH + H_2$	\rightarrow	$CH_2 + H$	2.79 1013	0.00	12.61	
	27	$CH + O_2$	\rightarrow	CHO + O	3.00 1013	0.00	0.00	
	28	$CH_3 + OH$	\rightarrow	$CH_2 + H_2O$	1.50 1013	0.00	20.93	
	29	$CH_2 + OH$	\rightarrow	$CH_2O + H$	2.50 1013	0.00	0.00	
	30	$CH_2 + OH$	\rightarrow	$CH + H_2O$	4.50 1013	0.00	12.56	
	31	CH + OH	\rightarrow	CHO + H	3.00 1013	0.00	0.00	

* Here cm, mol, K and kJ are the units.

** Catalytic efficiencies differ for different M; values here are for $M = H_2$. *** The high-pressure value k_{∞} is given here; tail-off curves are $k/k_{\infty} = (1 + 21.5 \times 10^{10} T^3/p^{0.6})^{-1}$, where p is in atm and T in K.

A. Liñán and F. A. Williams

Fundamental Aspects of Combustion, 1993, p.50

4-Step Mechanism

Fuel C	Consu	mption	
$CH_4 + H$	\rightarrow	$\mathrm{CH}_3 + \mathrm{H}_2$	
$CH_3 + O$	\rightarrow	$CH_2O + H$	
$CH_2O + H$	\rightarrow	$CHO + H_2$	
CHO + M	\rightarrow	CO + H + M	
H + OH	\rightarrow	$\mathrm{O}+\mathrm{H}_{2}$	
$H + H_2O$	\rightarrow	$OH + H_2$	
$\mathrm{CH}_4 + \mathrm{2H} + \mathrm{H}_2\mathrm{O}$	\rightarrow	$\rm CO + 4H_2$	
Wate	r-Ga	s Shift	
CO + OH	\rightleftharpoons	$CO_2 + H$	
$H + H_2O$	\rightleftharpoons	$OH + H_2$	
$CO + H_2O$	\rightleftharpoons	$CO_2 + H_2$	
Reco	mbin	ation	
$O_2 + H + M$	\rightarrow	$HO_2 + M$	
$OH + HO_2$	\rightarrow	$H_2O + O_2$	
$H + H_2O$	\rightarrow	$OH + H_2$	
2H + M	\rightarrow	$H_2 + M$	
Oxygen Co	onsui	nption and	
Radica	l Pro	duction	
$O_2 + H$	\rightleftharpoons	OH + O	
$O + H_2$	\rightleftharpoons	OH + H	
$OH + H_2$	\rightleftharpoons	$H_2O + H$	
$OH + H_2$	$\stackrel{\longrightarrow}{=}$	$H_2O + H$	
$O_2 + 3H_2$	~``	$2H_2O + 2H$	A. Liñán and

A. Liñán and F. A. Williams Fundamental Aspects of Combustion, 1993, p.51

Flame Structure

Air-Fuel Flame

Oxy-Fuel Flame

CF124:295-310 Kennedy (Illinois Chicago)

· , Tmax SP 1.2 3000 CH, 2500 0.8 Molar fractions 2000 0, 1500 🔀 Crossover temperature 0.4 но 1000 500 0 0 0.5 1.5 2 Distance from the fuel nozzle, cm

(b)

Korea Institute of Science and Technology

Two-Zone Structure

Thin "fuel decomposition region"

• Similar structure to the premixed flame of CH₄ and radicals

Thick "CO oxidation region"

>CH₄-R Premixed Flame
 >Super-Adiabatic Downstream
 >AEA by Linan
 →No Extinction
 →Improved Flame Stability

Robust Flame

Thin Fuel Decomposition Layer

• No Quenching **←** Superadiabatic

Thick CO Oxidation Layer

- $\delta_{\text{Oxy-Fuel}} \gg \delta_{\text{Air-Fuel}}$
- Longer Residence Time : t_{Diff} ~ δ^2
- Higher Temperature → Shorter Chemical Time t_{Ch}

Science and Technolog

- t_{Diff} >> t_{Ch} → Extremely Difficult to Quench
- Providing the Superadiabatic Thermal Shield

Fuel Reforming

Thinner CO Oxidation Layer

- Less Thermal Shielding for the Fuel Decomposition Layer
- Much Weaker to Outer Disturbances

What Happens if the Fuel Decomposition Layer is Percolated ?

- Can Occur for Heterogeneous Combustion
 - Fuel : Pulverized Coal or Heavy Fuel Oil
- Partial Oxidation vs Partial Combustion ?

Heterogeneous Combustion

- Percolated by Fuel Spray
- Partial Combustion
 - Completely Burnt or Unburnt
- Poor Gasification

- Percolated but Self-Healed
 - Repaired by Strong Reaction Structure
- Complete Combustion or Gasification
- Key Issue : Prevention of the Fuel-Decomposition Reaction-Front Percolation

Numerical Modelling

Transport : Strong Turbulence

- Oxy-Fuel Burner ~ Simple Co-Axial Pipes
- High Injection Velocity
 - Better Burner Tip Cooling
 - Better Recirculation Region → Better NOx Control
 - Improved Heat Transfer Properties

Kinetics : Thin Flame or Distributed Reaction ?

• Flamelet Model , CMC , PDF ,

CMC Calculation Results

Velocity and Mixture Fraction Fields

CMC Calculation Results

Temperature Fields

IFRF-Burner A

Science and Technology

Inaccuracies in the Boundary Condition & Conditioned Moments

Difficulties in Numerical Modelling

Limited Benchmarking Data

- No Turbulent Flame Structure Data
 - Lack of DNS Data & Optical Visualization or Measurements
- Limited Industrial Furnace Measurement
 - Incomplete Bench Marking Data from IFRF

Choice of Model

- Flame Thickness → Chemistry Closure (Flamelet or CMC)
- Strong Turbulence → Inaccuracy of Conditioned Moments

Yet Premature for Parametric Studies

Technical Challenges

OFC in Industrial Furnaces

• Most Technical Problems Are Solved or Solvable.

Gasification

- Occurrence of Partial Combustion
- Extremely Difficult for Numerical Modelling

OFC for CCS

- Uncertainties in the Retrofit Routes
- High CCS Cost → Increase in your electricity bill
 - Low Efficiency → High Fuel Cost
 - More Equipment → High Initial Investment

Difficulties in Gasification

- Consulting Inquiry from Samsung-BP
 - Gasification of HFO to Produce CO
 - Gasifier from GE-Energy (Chevron-Texaco)
- Problems
 - → Higher CO_2 Concentration ? → Yes !
 - ➤ Higher Soot Formation ? → Yes !
 - ➢ Flame Instability ? → Yes !
 - ♦ Burner Tip Was Damaged
- Cause
 - ➢ Burner Tip Damage → Loss of Stability
 - → Partial Quenching of Fuel Decomposition Layer
 - → Partial Combustion (CO2 & Soot Formation)
 - ➔ More Heat Loss ➔ More Partial Combustion
 - ➔ Failure of Partial Oxidation

Samsung-BP Case

- ✤ What Do They Want ?
 - Numerical Simulation of Unsatisfactory Gasification & Find a Remedy
- My Answer
 - ➢ No Way to do the Correct Numerical Simulation
 - No Subgrid Model for Partial Combustion
 - Partial Quenching of Thin Fuel-Decomposition Layer
- They Are Still Looking for Someone Who Can Do the Numerical Work.
- ✤ BAD Example Not to Follow
 - Numerical Modelling (?) without Physical Understanding

Samsung-BP Case

- How to Solve the Problem
- Fuel Preparation
 - Preheating to Improve Atomization
 - Steam Injection : Adding H & O
- Burner Design
 - Better Thermal Cooling for the Tip
 - Increase Injection Speed (Smaller Diameter ?)

Cheap Burner Design: Easy to Exchange

Optimize the Burner & Furnace Shapes

Oxy-PC Modelling Issue

Combustion with FGR

- Similar to Air Combustion : $N_2 \rightarrow CO_2$
- Doable with the Current Numerical Model

Radiative Heat Transfer

- New Castle Group : Stronger Radiation by CO₂
- Utah Group : No Significant Modification for Radiation
 - Radiation Dominated by Particles
- Others
 - We Need More Research to Figure Out Who's Correct.

CCS Cost (Retrofitting)

Coal Power Generation Cost					
Base COE (before CCS)		5¢/kWh			
CCS Investment Cost	+1¢/kWh	6¢/kWh			
 CCS Energy Consumption ➢ Efficiency : 40% → 30% → Less Electricity to Sell 	X 4/3	8¢/kWh			

- ✤ Over 50% Electricity Whole Sale Price Increase
- More Power Plants & Coal Consumption are Needed
- Higher Cost Rise for Lower Efficiency Plants
- There are Other Hidden Costs too.
- Likely Double the COE

CCS Cost

✦How to Reduce the CCS Cost ➢ Improve Power Plant Efficiency ➢ Reduce Fuel Cost ➢ Reduce Equipment Cost

CCS @ Power Industry

Science and reenhology

Future CCS Technology

Placement

- Another Dark Age of Nuclear Power ?
- More PC Power Demand (Base Load Coverage)
- Sorry! Renewable Energy Cannot Meet the Baseline Power Demand.
- \rightarrow CCS Becomes the Primary Route to Reduce CO₂ Emission

Basic Requirements

- High Efficiency : 700+°C Steam Temperature $\rightarrow \eta > 50\%$
- Low Plant Cost : Simple & Compact Power Plant Design
- Fuel Flexibility : Lower Fuel Cost
- Easy CO₂ Capture

Basic Requirements

Possibilities

Cyclone Furnace Oxy-Coal Combustion

- ≻ Recommended by KT, BL
- ♦ CFBC ?
 - Flow Rate may be too Low
 - ➤ Any Possibilities ?
- ✤IGCC ?
 - Economically Competitive ?
 - Unlikely Against Oxy-Coal
- Any Likely Option for PCC Route ?
 - > PCC = Post-Combustion Capture

Theoretical Challenges

Need to Verify the Two-Zone Structure for Turbulent Oxy-Fuel Flames

- By DNS
- & Optical Diagnostics
- Chemistry Modelling
 - Thin Flame or Distributed Reaction ?
- Transport Modelling
 - Handling of the High Turbulence by High-Speed Injection.

Industrial Simulation

Need Good Benchmark Data for Code Tuning

Science and Technolog

Technological Challenges

Oxy-Fuel Combustion in General

➢ Robust Flame → Less Technical Difficulties

Gasification or Fuel Reforming

- Insufficient Understanding of Reaction Zone Structure
- Prevention of Partial Combustion
- How to Maintain the Integrity of the Fuel-Decomposition Reaction Front

***** Oxy-PC for CCS

- Development of High Efficiency CCS-Ready Power Plant
- Technological Doable
- Financially Doable ?

