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Motivation for Modelling Deposit Formation
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 The deposition of ash in pulverized coal flames provokes several 
problems in the functioning of power plants:
 Due to the isolating effect of the deposition on heat tubes the heat

transfer is significantly deteriorated.
 The corrosive components of the ashes cause a lot of damage to 

the tube material.
 Ash shedding can cause severe damage to the furnace.

 The prediction of slagging tendency has been always a big issue for 
power plant operators:
 In the past mainly slagging indices were developed.
 As computational power rises CFD simulations come more and more 

into play.
 Development of CFD software considering:

 Transformation of mineral components of fuels
 Stickiness of particles (and surfaces)
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 Conservative Finite Volume formulation

 Modular structure

 Validation of the reliability of modeling assumptions at pilot and large scale

 Program code optimized for use of high-end super computers 
(Parallelisation, Vectorisation)

 Domain decomposition approach

 High level of detail (number of grid points for numerical discretisation up to 
10 mio cells)

Development of mathematical 
models and methods

3D combustion simulation for  
the solution of industrial 

problems

Program Code



Physical Models in AIOLOS
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Pulverized
Coal

Combustion

Turbulent two-phase flow
 k, ε-Model and Differential Reynolds Stress 

model
 Eulerian approach for the gas phase
 Lagrangian approach treating the particle phase

Radiative heat transfer
 Semi-stochastic Monte-Carlo model
 Flux method
 Discrete Ordinates Method
 Discrete Transfer model

Reaction model
 Global reaction scheme of pulverised coal 

combustion
 Consideration of particle size distribution
 NOx post-processor (fuel NO, thermal NO)

Heat
transfer

Radiation

Optical 
properties

Chemical 
Reactions

Homo-
genous

Reactions

Hetero-
genous

Reactions

Turbulence Two Phase
Flow

Fluid Flow
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 Mathematical models for heterogeneous char combustion at atmospheric 
and elevated pressure and under oxy-fuel conditions

 Modelling of NOx and SOx chemistry at oxy-fuel combustion conditions 

 Investigation and optimization of grate combustion systems for biomass 
by developing a new Euler-Euler approach for 2-phase flow simulation 

 Detailed coupled simulation of combustion and steam generation by 
connecting the furnace and water-steam simulation codes 

Mathematical Modelling: Current Developments

 Simulation of steam generation and development of process control 
strategies for a solar power plant

 Wood pellet burner optimization for a new decentralized electricity 
production system

 Numerical simulation of deposit formation in coal-fired utility boilers with 
biomass co-combustion 

 Mathematical models for fouling and slagging prediction with detailed 
description of mineral matter transformation and deposition mechanisms
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Modelling of Deposit Formation

Pyrolysis Char Burnout Fragmentation

Volatiles Steam

Assumptions:
 Full coalescence: Each fuel particle results in one 

mineral particle
 Reaction is influenced by temperature of particle and 

surrounding fluid and the main gas concentrations
 No interaction with volatiles and char
 Only impaction is considered in this work

Impaction

Condensation

DiffusionNucleation

Fly ash

Aerosols



Flowchart – Simulation of Deposit Formation
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Lagrangian Particle Tracking
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Modelling of mineral matter transformation
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Walsh´s Theory



Example Viscosity

16

 US Coal is a silicate rich coal
 Both coals not really known as having high slagging tendency
 Lignite has high content of CaO  S+S not applicable



Sticking Propensity based on ash melting
behaviour
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Example – US Coal 
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IFRF Furnace – Grid
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Characteristics:
• Jet flame
• Burner consists of two

concentric tubes
• Water cooling loops

Characteristics:
• Cartesian grid
• 200 000 cells
• 100 000 iterations until

convergence (24h on 4 Cores)



Testcase – Modified IFRF Furnace 
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Testcase – Modified IFRF Furnace 
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Testcase – Modified IFRF Furnace 
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Mineral Transformation - Pyrite 
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 Particle less than 1.5s in the furnace
 Predominant reactions are (1) and (2)
 Reactions (3) – (6) are pretty slow as oxygen used mainly for char combustion
 In large scale furnaces reaction (5) takes place in the deposition



Mineral Transformation - Illite
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 Dehydroxilation
 Slow reaction
 At temperatures higher than 1500 K mullite is build (missing kinetic)
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Oxy-fuel Process
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 Oxy-fuel combustion process 
causes compared to conventional 
operation specific conditions

 The modified composition of 
oxidizing atmosphere (mainly 
oxygen and recycled flue gas) has 
effect on:
 thermo-physical properties
 flame characteristics
 emission behavior

 Adjustments for various sub-models 
within simulations are required



Extended chemical reaction models
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Extended chemical reaction models
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 Atm. pulverized fuel combustion 
rig

 maximum thermal input 500 kWth

 vertically fired furnace with
 length: ~ 7.0 m
 diameter: ~ 0.8 m
 water-cooled and refractory lined

 oxy-fuel operation:
 flue gas recycling
 O2 from external storage tank

Level

Outlet

Inlet:
- carrier gas + coal
- combustion gas
- pre-heated air / RFG

in-flame
measurements

continuous 
exhaust gas 

measurements

Experimental set-up
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core

coal

surround 1

surround 2

surround 3

Experimental set-up
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 Burner layout:
 four oxidizer inlets → highly flexible operation
 swirl imposed in outer annular section “surround 2”
 bluff body included for mixing and stabilization

 Computational mesh:
 detailed grid with approx. 2.2 mio cells



Modelling of Oxy-fuel Combustion



Comparison of experiment and simulation
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 Oxy-fuel test case
» axial plots on furnace centerline

gas temperature O2 concentration



Comparison of experiment and simulation
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 Oxy-fuel test case
» axial plots on furnace centerline

CO concentration CO2 concentration



Comparison of experiment and simulation
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 Oxy-fuel test case
» radial plots at 0.16 m below the burner (level 2)

O2 concentration CO2 concentration



Modelling of Oxy-fuel Combustion

 Simulation of Oxy-fuel combustion pilot plant „Schwarze Pumpe“ (30 MW) 



Summary and Outlook

 General description of mineral matter transformation has been
implemented in CFD code AIOLOS

 Two approaches for prediction of stickiness have been introduced → 
enables to simulate the deposit build-up at furnace walls

 Oxy-fuel combustion modelling in AIOLOS

 Rise of computational power will be used to combine the simulation of 
various single phenomena into one approach

 Improvement of stickiness criteria and validation have to be carried on 
(Project TU Munich) 

 Effect of oxy-fuel atmosphere on mineral matter transformation has to be
investigated and implemented (running projects at IFK)
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And thank you for your attention!
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