

Prof. Dr. techn. G. Scheffknecht

Modelling of Mineral Transformations and Slagging in PC Flames with CFD Code AIOLOS

Conventional air flames and prospects for oxy-fuel combustion

i-Math Workshop on Mathematical Modelling of Combustion Santiago de Compostela, May 23-25, 2011

Olaf E. Lemp

Overview

Ifk

- Introduction
 - → CFD Code AIOLOS
- Modelling of Deposition
 - → Mineral Transformation
 - ➡ Walsh's Theory
 - ➡ Viscosity
 - → Ash melting behavior
- Modelling of Oxy-fuel Combustion
 - ➡ Homogenous reactions
 - → Heterogeneous reactions
 - ➡ Validation
- Summary

Motivation for Modelling Deposit Formation

Ifk

Motivation for Modelling Deposit Formation

- **Ifk**
- The deposition of ash in pulverized coal flames provokes several problems in the functioning of power plants:
 - → Due to the isolating effect of the deposition on heat tubes the heat transfer is significantly deteriorated.
 - ➡ The corrosive components of the ashes cause a lot of damage to the tube material.
 - → Ash **shedding** can cause severe damage to the furnace.
- The prediction of slagging tendency has been always a big issue for power plant operators:
 - → In the past mainly **slagging indices** were developed.
 - → As computational power rises CFD simulations come more and more into play.
- bevelopment of CFD software considering:
 - → **Transformation** of mineral components of fuels
 - → Stickiness of particles (and surfaces)

Overview

ıfk

Introduction

- ➡ CFD Code AIOLOS
- Modelling of Deposition
 - Mineral Transformation
 - ➡ Walsh's Theory
 - ➡ Viscosity
 - ➡ Ash melting behavior
- Modelling of Oxy-fuel Combustion
 - ➡ Homogenous reactions
 - ➡ Heterogeneous reactions
 - ➡ Validation
- Summary

- Conservative Finite Volume formulation
- Modular structure
- Validation of the reliability of modeling assumptions at pilot and large scale
- Program code optimized for use of high-end super computers (Parallelisation, Vectorisation)
- Domain decomposition approach
- High level of detail (number of grid points for numerical discretisation up to 10 mio cells)

Physical Models in AIOLOS

Turbulent two-phase flow

- k, E-Model and Differential Reynolds Stress model
- Eulerian approach for the gas phase
- → Lagrangian approach treating the particle phase

Radiative heat transfer

- Semi-stochastic Monte-Carlo model
- → Flux method
- Discrete Ordinates Method
- Discrete Transfer model

Reaction model

- Global reaction scheme of pulverised coal combustion
- → Consideration of particle size distribution
- → NO_x post-processor (fuel NO, thermal NO)

Mathematical Modelling: Current Developments

- ıfk
- Mathematical models for heterogeneous char combustion at atmospheric and elevated pressure and under oxy-fuel conditions
- → Modelling of NOx and SOx chemistry at oxy-fuel combustion conditions
- → Numerical simulation of deposit formation in coal-fired utility boilers with biomass co-combustion
- Detailed coupled simulation of combustion and steam generation by connecting the furnace and water-steam simulation codes
- Mathematical models for fouling and slagging prediction with detailed description of mineral matter transformation and deposition mechanisms
- ➡ Investigation and optimization of grate combustion systems for biomass by developing a new Euler-Euler approach for 2-phase flow simulation
- Simulation of steam generation and development of process control strategies for a solar power plant
- Wood pellet burner optimization for a new decentralized electricity production system

Overview

Introduction → CFD Code AIOLOS

Modelling of Deposition

- ➡ Mineral Transformation
- ➡ Walsh's Theory
 - ➡ Viscosity
 - → Ash melting behavior
- Modelling of Oxy-fuel Combustion
 - ➡ Homogenous reactions
 - → Heterogenous reactions
 - ➡ Validation
- Summary

Modelling of Deposit Formation

Assumptions:

- Full coalescence: Each fuel particle results in one mineral particle
- ➡ Reaction is influenced by temperature of particle and surrounding fluid and the main gas concentrations
- ➡ No interaction with volatiles and char
- → Only impaction is considered in this work

Flowchart – Simulation of Deposit Formation

ıfk

Particle Tracking in AIOLOS for calculation of deposition:

- Basic Simulation with Euler description for the coal particle phase
- Stream-, temperature-, concentration field of main gas species as boundary conditions (One way coupling)
- Solving equation of motion for each time step (analytical):

$$\frac{\partial}{\partial t} (m_P \cdot u_p) = F_D + F_g \quad \Rightarrow$$
$$u_P = u_G (u_P^0 - u_G) \exp\left(-\frac{\Delta t}{\tau_P}\right) + \tau_P F_g \left[1 - \exp\left(-\frac{\Delta t}{\tau_P}\right)\right]$$

- Account for:
 - Turbulent fluctuation (Monte Carlo type approach)
 - → Heat balance
 - Particle relaxation
 - ➡ 10-13 different particle size classes

Modelling of mineral matter transformation

Seneral description of mineral matter transformation:

 $\nu_{1,E}E_1 + \nu_{2,E}E_2 + \cdots \leftarrow TRANSFORMATION \rightarrow \nu_{1,P}P_1 + \nu_{2,P}P_2 + \cdots$

General unsteady transform modell:

(2)
$$\frac{dX}{dt} = K \cdot f(X)$$

Dependency of transformation constant K (TGA/DTA analysis):

(3)
$$K = f_1(\beta_t) \cdot f_2(k_0, E_A, T) \cdot f_3(p_{O_2}) \cdot f_4(p_{H_2O}) \cdot f_5(p_{CO_2})$$

Mineral transformation modelling:

(4) f(X) = f(Physics, Chemistry)

ifk

Overview

Introduction

→ CFD Code AIOLOS

Modelling of Deposition

- Mineral Transformation
- ➡ Walsh's Theory
 - ➡ Viscosity
 - → Ash melting behavior
- Modelling of Oxy-fuel Combustion
 - ➡ Homogenous reactions
 - ➡ Heterogenous reactions
 - ➡ Validation
- Summary

ıfk

S Walsh's Theory for calculation of net fraction of mass deposit:

(1)
$$f_{STCK} = \underbrace{P_P(T_P)}_{sticking \ particles} + \underbrace{[1 - P_P(T_P)] \cdot P_S(T_S)}_{sticking \ surface} - \underbrace{k_e[1 - P_P(T_P)][1 - P_S(T_S)]}_{erosion}$$

Sticking propensity:

(2)
$$P_{P/S} = \frac{\mu_{Ref}}{\mu} \quad 0 \text{ (non sticky)} \dots 1 \text{ (fully sticky)} \rightarrow P = \min\left(\frac{\mu_{Ref}}{\mu}, 1.\right)$$

- Calculation of viscosity using empirical correlations based on "Weymanns law"
- (3) $\mu = \mathbf{A} \cdot T + \exp\left(\mathbf{B} \cdot \frac{1000}{T}\right)$
- Parameters A and B to be calculated with empirical correlations, e.g. Urbain, Watt+Fareday, Kalmanovitch+Frank, Senior+Srinivasachar ... f(Ca0, Al₂O₃, Fe₂O₃, FeO, SiO₂, TiO₂, MgO, Na₂O, K₂O)

Example Viscosity

- US Coal is a silicate rich coal
- Both coals not really known as having high slagging tendency
- ➡ Lignite has high content of CaO \rightarrow S+S not applicable

Sticking Propensity based on ash melting behaviour

- Empirical correlations for calculation of viscosity are almost only applicable for silicate rich coals
- Difficulty to measure reference viscosity

- New approach based on ash melting behavior (Danish Group)
- Software **FactSage** for calculation of thermochemical equilibrium
- Proposal Frandsen:
 - < 10% melted phase \rightarrow non sticky
 - 10% 70% melted phase \rightarrow partially sticky
 - > 70% melted phase \rightarrow sticky

Example – US Coal

Overview

Introduction

➡ CFD Code AIOLOS

Modelling of Deposition

- Mineral Transformation
- ➡ Walsh's Theory
 - ➡ Viscosity
 - → Ash melting behavior

➡ Testcase

- Modelling of Oxy-fuel Combustion
 - ➡ Homogenous reactions
 - → Heterogenous reactions
 - ➡ Validation

Summary

IFRF Furnace – Grid

Ifk

Characteristics:

- Jet flame
- Burner consists of two concentric tubes
- Water cooling loops

Characteristics:

- Cartesian grid
- 200 000 cells
- 100 000 iterations until convergence (24h on 4 Cores)

Testcase – Modified IFRF Furnace

Testcase – Modified IFRF Furnace

X Zy

Testcase – Modified IFRF Furnace

Mineral Transformation - Pyrite

 $\begin{array}{ll} FeS_2[s] \to FeS[s] + S_2[g] & (1) \\ FeS[s] \to Fe[s] + 0.5 \ S_2[g] & (2) \\ 3(FeS_2) + 8 \ O_2 \to Fe_3O_4 + 6 \ SO_2 & (3) \\ FeS + O_2 \to Fe_3O_4 + SO_2 & (4) \\ Fe_3O_4 + 0.25 \ O_2 \to 1.5 \ Fe_2O_3 & (5) \\ Fe + 0.66 \ O_2 \to 0.33 \ Fe_3O_4 & (6) \end{array}$

- Particle less than 1.5s in the furnace
- Predominant reactions are (1) and (2)
- Reactions (3) (6) are pretty slow as oxygen used mainly for char combustion
- In large scale furnaces reaction (5) takes place in the deposition

Mineral Transformation - Illite

 $\begin{array}{ll} (1) & (K,H_3O)Al_2[OH]_2[AlSi_3O_{10}] \rightarrow \\ semimetaillite + 1.53 \ H_2O \\ (2) & semimetaillite \\ \rightarrow metaillite + 0.97 \ H_2O \end{array}$

- Dehydroxilation
- Slow reaction
- At temperatures higher than 1500 K mullite is build (missing kinetic)

Overview

Ifk

- Introduction
 - ➡ CFD Code AIOLOS
- Modelling of Deposition
 - Mineral Transformation
 - ➡ Walsh's Theory
 - ➡ Viscosity
 - → Ash melting behavior
- Modelling of Oxy-fuel Combustion
 - ➡ Homogeneous reactions
 - → Heterogeneous reactions
 - ➡ Validation
- Summary

Oxy-fuel Process

- Oxy-fuel combustion process causes compared to conventional operation specific conditions
- The modified composition of oxidizing atmosphere (mainly oxygen and recycled flue gas) has effect on:
 - → thermo-physical properties
 - ➡ flame characteristics
 - emission behavior
- Adjustments for various sub-models within simulations are required

Homogeneous chemistry:

(1)
$$C_n H_m + n/2 O_2 \rightarrow n CO + m/2 H_2$$

(2) $C_n H_m + n H_2 O \rightarrow n CO + (m/2 + n) H_2$
(3) $H_2 + \frac{1}{2} O_2 \leftrightarrow H_2 O$
(4) $CO + H_2 O \leftrightarrow CO_2 + H_2$

- → implementation of additional reactions and assuming equilibrium reactions enables accounting for chemical effects of specifically high O₂ and CO₂ levels in the oxidizing atmosphere during oxy-fuel combustion
- ➡ including reverse reaction of (3) is particularly required for correct prediction of local flame temperatures since equilibrium is shifted towards educts in high temperature flames

Heterogeneous chemistry:

(1)	$C + \frac{1}{2}O_2 \rightarrow CO$	
(2)	$C + CO_2 \rightarrow 2CO$	

 $(3) \quad C + H_2 O \rightarrow CO + H_2$

(char oxidation) (Boudouard reaction) (water-gas-shift reaction)

- → reactions (2) and (3) may have major impact in O₂-lean regions due to higher partial pressures of CO₂ and H₂O compared to conventional airfiring
- → at ambient pressure and typical combustion temperatures the reactions
 (2) and (3) may be considered irreversible since the equilibrium is shifted towards the product side

Experimental set-up

Inlet:

- carrier gas + coal
- combustion gas
- pre-heated air / RFG

Ifk

- Burner layout:
 - \rightarrow four oxidizer inlets \rightarrow highly flexible operation
 - → swirl imposed in outer annular section "surround 2"
 - bluff body included for mixing and stabilization

Modelling of Oxy-fuel Combustion

Ifk

Comparison of experiment and simulation

- Oxy-fuel test case
 - » axial plots on furnace centerline

Comparison of experiment and simulation

- Oxy-fuel test case
 - » axial plots on furnace centerline

Comparison of experiment and simulation

- Oxy-fuel test case
 - » radial plots at 0.16 m below the burner (level 2)

ıtk

Modelling of Oxy-fuel Combustion

- **Ifk**
- Simulation of Oxy-fuel combustion pilot plant "Schwarze Pumpe" (30 MW)

Summary and Outlook

- General description of mineral matter transformation has been implemented in CFD code AIOLOS
- Two approaches for prediction of stickiness have been introduced \rightarrow enables to simulate the deposit build-up at furnace walls
- Oxy-fuel combustion modelling in AIOLOS

- Rise of computational power will be used to combine the simulation of various single phenomena into one approach
- Improvement of stickiness criteria and validation have to be carried on (Project TU Munich)
- Effect of oxy-fuel atmosphere on mineral matter transformation has to be investigated and implemented (running projects at IFK)

References (1)

- Schnell, U.: Numerical Modelling of Solid Fuel Combustion Processes Using Advanced CFD-Based Simulation Tools. PCFD 1 (2001) No. 4, 208-218
- Walsh, P.M.; Sarofim, A.F. und Beer, J.M.: Fouling of Convection Heat Exchangers by Lignitic Coal Ash. Energy & Fuels, 6-709, 1992
- **Michel**, J.-B., Payne, R.: Detailed measurement of long pulverized coal flames for the characterization of pollutant formation, Research Report, IFRF, Ijmuiden, 1980.
- Leiser, S. : Numerical Simulation of Oxy-fuel Combustion, Dissertation
- Müller, M.: Advanced modeling of pulverized coal combustion under oxy-fuel conditions, Clearwater, 2010.
- A. Kather and G. Scheffknecht: "The oxycoal process with cryogenic oxygen supply", Naturwissenschaften, vol. 96, pp 993-1010, 2009.
- Stefan **Richter**, Numerische Simulation der Flugaschedeposition on kohlestaubgefeuerten Dampferzeugern. Stuttgart, 2002.
- Urbain, G. et al.: Viscosity of silicate melts, Trans. J. Br. Ceram. Soc. 80 (1981), pp. 139 141
- Browning. et al.: An empirical Method for the Prediction of coal Ash Slag Viscosity, Energy & Fuel 17 (2003), pp. 731 – 737
- Watt, J.D.; Fereday, F.: The flow properties of slags formed from the ashes of British coals: Part 1, J. Inst. Fuel 42 (1969), pp. 99 103

References (2)

ıfk

- **Bozic**, O.: "Numerische Simulation der Mineralumwandlung in Kohlenstaubfeuerungen", TU Braunschweig, 2003.
- **Tomeczek**, J. : "Kinetics of mineral matter transformation during coal combustion", Fuel 81, pp 1251-1258, 2002.
- M. Frank D.P. Kalmanovitch, "An Effective Model of Viscosity for Ash Deposition Phenomena," in *Proc. of the EF Conference*, Santa Barbara, CA, 1989.
- F.J. Frandsen, K. Dam-Johansen S. Vargas, "Rheological properties of high-temperature melts of coal ashes and other silicates," *Progress in Energy and Combustion Science*, vol. 27, no. 237-429, 2001.
- S. **Srinivasachar** C.L. **Senior**, "Viscosity of Ash Particles in Combustion Systems for Prediction of Particle Sticking," *Energy and Fuels*, pp. 9-277, 1995.
- **Tanaka**, H: "Thermal analysis and kinetics of solid state reactions", Thermochimica Acta, 267:29-44, 1995.

Institute of Combustion and Power Plant Technology

And thank you for your attention!