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Motivation and goals

Heat treatment of forged axles
Reheating furnace in a hot rolling plant

Forged (automotive) axles manufacturing

(Usual) Stages in manufacturing process

(1) hot forging
- material heating furnace
- forging press (hydraulic hammer)
(2) heat treatment I: quench hardening
- austenizing
- guenching
(3) heat treatment Il: tempering

- reheating
- controlled (ambient) cooling
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Austenizing furnace
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Motivation and goals
Heat treatment of forged axles
Reheating furnace in a hot rolling plant

Goal: analysis of furnace configuration and operation

conditions

Design of furnace (re)configuration

@ Prediction of steel pieces heating for a given furnace
design (and operation conditions) in the framework of the
modification of an existing furnace

-

Design of operation conditions

@ Direct design: prediction of axles heating for given
operation conditions

@ Inverse design: determine optimal operation conditions
(minimizing some objetive function)
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Motivation and goals
Heat treatment of forged axles
Reheating furnace in a hot rolling plant

Wire rod and corrugated manufacturing

Stages in manufacturing process
(1) material (billets) reheating
(2) hot rolling (rod mills)

(3) cooling in water boxes

Continuous

" Casting

Shear Furnace Shear Rolling Train nﬁ:"ﬁ"ﬁzng Coiling
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Motivation and goals
Heat treatment of forged axles
Reheating furnace in a hot rolling plant

Reheating furnace

Walking beam (billet reheating) furnace
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Motivation and goals
Heat treatment of forged axles
Reheating furnace in a hot rolling plant

Reheating furnace (cont.)

Billet reheating furnace operation

Control strategy

@ preset heating curves (set points)
@ event—related corrections (recipes)

\
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Motivation and goals
Heat treatment of forged axles
Reheating furnace in a hot rolling plant

Goal: fast tool for billet heating prediction

Model based control of reheating furnace

@ billet heating prediction under dynamical conditions
- time—dependent power of (group of) burners
- non-steady operation of walking beam system
(resulting in variable residence times)
- non—regular billets feeding (presence of gaps)
@ real time implementation of a simulation tool
- to be used in control strategy
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Heat treatment of forged axles A 2D quasi-steady model
Fast direct and inverse design

Basic aspects of the model
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Involved phenomena
@ combustion in burners

@ thermofluid dynamics of combustion products
@ heat transfer in pieces and furnace walls
@ thermal radiation in furnace chamber
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Heat treatment of forged axles A 2D quasi-steady model
Fast direct and inverse design

Basic aspects of the model (cont.)

Simplifying hypotheses
@ complete combustion on a known flame surface
@ gases (except flame) not participating in thermal radiation
@ steady temperatures on furnace walls and gases
@ 2D model (over mean vertical section)
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Heat treatment of forged axles A 2D quasi-steady model
Fast direct and inverse design

Derivation of a global model: segregated approach

Submodel 1: furnace walls
@ Thermal radiation: refractory—flames—axles
@ Convection from/to gases (chamber and ambient)

Submodel 2: thermofluid dynamics of combustion products
@ Convection from/to furnace walls and axles

Submodel 3: axles heating

@ Evolution problem

@ Thermal radiation and convection from/to gases

E. Martin, C. Mourenza, F. Varas Numerical Simulation and Reduced Order Modelling of Steel Proc



Heat treatment of forged axles A 2D quasi-steady model
Fast direct and inverse design

Furnace walls submodel

OO0 OO0 OO0 000 OO0 O00 000 OO0 O00 000 000 OO0

On furnace walls

—div(keVTe) =0

i

Boundary conditions

@ Outer boundary: —ke Zle = h(Te — Too)

@ Inner boundary: —ke 2 = Geony + Orad
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Fast direct and inverse design

Furnace walls submodel (II)

OO0 OO0 OO0 OO0 000 OO0 000 000 000 000 0DOo0 ooa

Surface—to—surface thermal radiation

For k—th surface element:
Nrad

1 .

k

din = 2 > AiFikGout
k=

k k
Gout = PkUin + ekUTI?
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Furnace walls submodel (llI)

Flux computation on participating surfaces: Gebhardt factors

Nrad .
k I 4
Qout — Pk Z FikOout = €ko Ty
j=1
oex Nrad
k 4 T4
Onet = O€k T — A ZG]ij
=1

Conditions on burners: energy balance on flame surface

Npurner

V.Vburner = Z (quiet + pAh\7- I:]»Ak)
k=1
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Thermofluid dynamics submodel

Turbulent, steady, compressible flow

div(pgU) =0

div(pgU @ U) + VP — div(u(VU + (VU)T) = divrR

div(pgUTg) — div((k + k1 )VTg) =0
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Heat treatment of forged axles A 2D quasi-steady model
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Thermofluid dynamics submodel (II)

Turbulence model: standard k — ¢
div(pgUk) — div((s + ’;—T)ﬁk) =R VU0 — pge
k

€2

pgU - Ve — div((u + E7)Ve) = CeliTR : VU — Ceapg W Po€

Boundary conditions

Wall laws on:

@ refractory

@ axles
Inlet conditions (known velocity and temperature) on:
~ @ flame surfaces
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Axles heating submodel

i s e A | ;
Q@ 0 o 0 ¢ o © @ @ o

el LS VLU IV L]

Axles heating

oT . =

4

Boundary conditions

oT
_kpa—np = Orad + Gconv
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Heat treatment of forged axles A 2D quasi-steady model
Fast direct and inverse design

Axles heating submodel (II)

Initial conditions

For the n-th axle position, solve

n

oT =

and initial condition

TF? ()?7 O) = Tg_m()?7 tres)

@ Final values are used in submodels coupling
@ heat flux on boundary kept constant over (0, tres)
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Heat treatment of forged axles A 2D quasi-steady model
Fast direct and inverse design

Global algorithm

Algorithm outline

@ Initialize axles heating curve
@ Initialize convective fluxes

@ lIteration loop on submodels:

@ Solve (steady) model (radiation—conduction) on furnace
Solve (steady) model (thermofluid dynamics) on gases
Solve (evolution) model for axles heating

Convergence test

¢ ¢ ¢

-

Some relaxation is needed to avoid numerical instabilities
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Heat treatment of forged axles A 2D quasi-steady model
Fast direct and inverse design

Numerical discretization

Furnace (walls) submodel

@ non-linearity: fixed point
@ spatial discretization: P1 finite element
@ Gebhardt (factor) matrix is stored

Gases submodel
@ segregated solver (N-S, k — ¢, energy) with fixed point
@ non-linearities: fixed point and Newton
@ spatial discretizacion: P2/P1+SUPG and P1 — b

| A\

Axles submodel
@ time integration: BDF—1 with time step adaption

| \

@ spatial discretizacion: P1 finite element
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Heat treatment of forged axles A 2D quasi-steady model
Fast direct and inverse design

Implementation with free software tools

CAD and meshing using Grsh
http://geuz. org/ gnsh/

Model solvers using El mer
http://ww. csc. fi/english/pages/el mer

Global algorithm programming using Pyt hon
http://ww. pyt hon. or g/

http://ww. sci py. org/

Postprocessing using Par avi ew
http://ww. paravi ew. or g/
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Heat treatment of forged axles A 2D quasi-steady model
Fast direct and inverse design

Heat treatment (austenizing) furnace

o e | — — | -

© o o o e o o] [c] o] o]
OOon oon OOD 000 OO0 OO0 000 D00 000 000 ooo oog

el JLJLJU UL LTV L

Operation conditions: power

@ Total furnace power: 1.81 MW
@ Group I nominal power (6 burners): 1.15 MW

@ Group Il nominal power (7 burners): 0.66 MW

Operation conditions: feeding
@ Residence time: 720 s.
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Heat treatment furnace simulation
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Heat treatment of forged axles A 2D quasi-steady model
Fast direct and inverse design

Heat treatment furnace simulation (lI)

Some computational figures

@ Mesh size

furnace (walls): 24000 nodes

@ gases: 38500 nodes

@ axles: 2300 nodes

@ radiating surfaces: 30000 edges

@ Global algorithm iterations: 9
@ Tolerance in convergence test: 1K

@ Computational cost:

@ 3.5 h. of computation (Core2Duo 2.5 GHz, 1 core)
@ memory peak below 1 GB

©
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Heat treatment furnace simulation (110)

Numerical simulation results

Temperature (K)
750 1000

500
LU |

300
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Validation
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Validation (II)

Temperatura (C)

¢ Simulacion
Ensayo

7000 5000 5000 7000 8000 5000
tiempo (s)
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@ Fast direct and inverse design
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Heat treatment of forged axles A 2D quasi-steady model
Fast direct and inverse design

Fast heating prediction

Direct numerical simulation
Computation time makes non—affordable:

@ integration in process simulation tools
@ optimization of operation conditions

Alternative

@ Preprocessing through simulation databases
@ To be defined:

@ building/storage strategies
@ interpolation techniques

in, C. Mourenza, F. Varas Numerical Simulation and Reduced Order Modelling of Steel Proc



Heat treatment of forged axles A 2D quasi-steady model
Fast direct and inverse design

Simulation database storage

Storage in tensor form
Value corresponding to:

@ input parameters eq, €5, ... €q
@ output parameters s; , Sy, ... Sm
IS storage as: aee,...ens;s,...5m

el s1

— —
e2 s2
en am
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Fast direct and inverse design

Simulation database storage (ll)

Input parameters (e, €5, ... €n)
@ feeding velocity (e1)
(index spans set of velocities used in database building)
@ power of each group of burners (e,, ... €;)
(index spans set of powers used in database building)

Output parameter (s;)

@ axle temperature
(index spans set of points stored in database)

E. Martin, C. Mourenza, F. Varas Numerical Simulation and Reduced Order Modelling of Steel Proc



Heat treatment of forged axles A 2D quasi-steady model
Fast direct and inverse design

Singular Value Decomposition

SVD factorization
A=UxVT ¥ diagonal, U andV orthogonal

@ allows compression (optimal low—rank approximations)
@ gives modal information (on rows and columns)

Higher—Order SVD (HOSVD) factorization

A=38 x; u® X2 u®... XN uN)

@ allows compression (although S not diagonal)
@ gives modal information (on each input variable!)

@ (one variable) interpolation (using U(® columns) to predict
for new input variables

E. Martin, C. Mourenza, F. Varas Numerical Simulation and Reduced Order Modelling of Steel Proc



Heat treatment of forged axles A 2D quasi-steady model
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Interpolation using HOSVD

Interpolation in variable related to |-th index

PxM) =8 x, u® ... X NxMu® ... x uM)

NT NI

= ZZ Zsmz Ui - Zak x)Ug}) - Ui,

1=1ljp=1 jy=1

where:

T .
ZE':l ak(X|)U|£|J)| interpolation operator on table {(x', U i JI)}II
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Heating prediction using DB and HOSVD

Database building

@ residence times: 540, 720 and 900 s.
@ group | burners powers: 50%, 75% and 100%
@ group Il burners powers: 50%, 55% and 60%

-

Database exploitation

@ no compression used
@ axle heating predicted for:

@ residence time: 630 s.
@ group | burners power: 85%
@ group Il burners power: 58%

@ prediction computation time ~ 0.1s

A\
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Heating prediction using DB and HOSVD (lI)

Axle heating prediction (central position)
Direct numerical simulation DB/HOSVD prediction

=

Temperature
1085

‘ £1080

1070

[1060

1050
1040

Maximum error below 5 K.
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Inverse design

Inverse design problem formulation

Minimization of a funcional based on:
@ quality of heat treatment
@ energy consumption
@ other parameters

Solving inverse design problems

@ huge cost using direct numerical simulation
@ affordable cost using a HOSVD approach
@ easy computation of (exact) derivatives

@ (on—going) implementation of trust region techniques using
a conjugate gradient (Steihaug—Toint) algorithm

in, C. Mourenza, F. Varas Numerical Simulation and Reduced Order Modelling of Steel Proc
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a Reheating furnace in a hot rolling plant
@ Reduced order model
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Reduced order model
Reheating furnace in a hot rolling plant Implementation and preliminary results

Heating prediction under dynamical conditions

Reheating furnace operation

Furnace operation slave to rolling train operation (programmed
and non—programmed events)

m
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Reduced order model
Reheating furnace in a hot rolling plant Implementation and preliminary results

Billets heating modelling

(Single) Billet heating model

T .= ;
pcpaa—t —div(kVT)=0 inQ x (tin, tout)

—k=— = q(t) on 09 x (timtOUI)

@ g(t) introduces non-local (and non-linear) behaviour

° Q(t) = Qconv (t) + Qcond (t) + Qrad (t)
@ assembling of q(t) depends on (variable) billet position

@ pcp and k are temperature—dependent

E. Martin, C. Mourenza, F. Varas Numerical Simulation and Reduced Order Modelling of Steel Proc



Reduced order model
Reheating furnace in a hot rolling plant Implementation and preliminary results

Simplified billets heating model

Reduction to a linear and local problem

Heating modelling over (tn, th. 1) with t, 11 = t, + At:
OTni1
C
LaCINPT

—div(kVThy1) =0  inQ X (th,thy1)
Tn_i_l()?’tn) = Tn()?:tn) |nQ

6Tn+l
on
with pcp, k and g, computed from temperatures at t,

—k = qn on 89 X (tn,tn_;’_l)

Discretization with small At
@ control of modelling error
@ stability of resulting algorithm

| \
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Reduced order model
Reheating furnace in a hot rolling plant Implementation and preliminary results

Furnace walls heating modelling

Furnace walls heating model

oT , -
peCpea—te — d|V(keVTe) =0

with boundary conditions

oT
_ke ane = h(Te - TOO) on rext
oT
_kea—ne = Qconv + Ycond + rad on rint

and suitable initial conditions




Reduced order model
Reheating furnace in a hot rolling plant Implementation and preliminary results

Heat flux (to billets and furnace walls) segregation

Flux segregation

On every boundary of billets and structure:

d = dconv + Ycond + Orad

@ (conv: COnvection heat flux (from/to gases)
@ (cong: Cconduction heat flux (through hearth)

@ (aq: radiation heat flux

Modelling of segregated fluxes
@ (;ag cOmputed from temperatures of participating surfaces
@ (conv @nd Qeong Correlated with actual powers (so far!)
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Reduced order model
Reheating furnace in a hot rolling plant Implementation and preliminary results

Computing radiation flux

Energy balance on each burner

@ instantaneous power (could be zero) used

@ temperature assumed homogeneous over each burner

Npurner

V.Vburner = Z (quﬁet + PAhV' r_]’Ak)
k=1

Treatment of gaps (absence of billet charge)
@ Gaps modify Gebhardt matrix (non—affordable approach)
@ Instead neutral radiation surfaces (each gap) introduced

Nhollow

0= Z qléet
k=1
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Reduced order model
Reheating furnace in a hot rolling plant Implementation and preliminary results

Solving heating model (billets and furnace walls)

Galerkin method
@ Choice of a base {d)i()?)}i'\':bise
@ Find Th(X,t) = Y1 o (t)d; (X) such that

Npase d Npase

Qj - -
; W/Qpcpcpicp,- dQ + ;ai/ﬂkvqudg

:/ q®; dS Vi =1,2,...Npase
0

Matrix form
da -
M— +Ka=Db
at + Ka )
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Reduced order model
Reheating furnace in a hot rolling plant Implementation and preliminary results

A reduced order model

Alternative I: finite element method

@ Npase = mesh degrees of freedom
@ charasteristic values (number of nodes):

@ billets: 50-500 (each billet)
o furnace walls: 10000—-15000

@ real time implementation unfeasible (or very challenging)

Alternative Il: Galerkin—Proper Orthogonal Decomposition
@ An empirical base is extracted from a set of (snapshots)

@ Npase Can be quite small:
4—6 modes (furnace walls and each billet)

E. Martin, C. Mourenza, F. Varas Numerical Simulation and Reduced Order Modelling of Steel Proc
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Reheating furnace in a hot rolling plant Implementation and preliminary results

Outline

a Reheating furnace in a hot rolling plant

@ Implementation and preliminary results
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Reduced order model
Reheating furnace in a hot rolling plant Implementation and preliminary results

Implementation of a reduced—-order model (ROM)

Generation of a ROM basis
POD computation from a set of snapshots
@ billets: heating under nominal steady operation
@ furnace: steady temperature under different regimes

Assembling/integration of Galerkin—-POD evolution equations

Preprocessing of:
@ mass and stiffness modal matrices
@ projection operator to compute modal charges
@ fundamental matrices of ODE’s system

E. Martin, C. Mourenza, F. Varas Numerical Simulation and Reduced Order Modelling of Steel Proc



Reduced order model
Reheating furnace in a hot rolling plant Implementation and preliminary results

Real time implementation

Dynamical model (executed every minute)

Input variables (data acquired during last minute):
@ actual power of each burner (sampled every second)
@ time(s) of movement of walking beam system
@ time(s) of charge of new billet(s)
@ temperature of charged billet(s)
Initial values:

@ Mean temperature of billets (beginning of the last minute)
Output variables:

@ Mean temperature of billets (end of the last minute)

E. Martin, C. Mourenza, F. Varas Numerical Simulation and Reduced Order Modelling of Steel Proc



Reduced order model
Reheating furnace in a hot rolling plant Implementation and preliminary results

Preliminary validation

Reheating furnace in (hot) rolling train

@ total furnace power: 80 MW
@ mean power during test I: 28 MW
@ mean power during test Il: 37 MW

Computational details

@ computation time: 0.5-0.7 s

@ used memory peak: below 65 MB

in, C. Mourenza, F. Varas Numerical Simulation and Reduced Order Modelling of Steel Proc



Reheating furnace in a hot rolling plant

Reduced order model

Preliminary validation: test |
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Implementation and preliminary results
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Reduced order model
Reheating furnace in a hot rolling plant Implementation and preliminary results

Preliminary validation: test Il
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Concluding remarks

Numerical modelling under steady conditions

Direct numerical simulation
@ accurate numerical predictions
@ implementation with free software tools
@ fast predictions using simulation databases

Optimization of operation conditions

@ affordable optimization using DB/HOSVD models
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Concluding remarks

Numerical modelling under dynamical conditions

Numerical simulation tool

@ implementation in a real time tool
@ poor numerical predictions under very variable conditions

Reduction of fuel consumption

Regulation using a previous model implementation

Consumo gas natural - Horno de Recalentamiento

530+
510+
490w
4704
450
430+
4109
3909
3709
3509

kWh/Ton

08 09 Ene Feb Mar Abr May Jun Jul Ago Sep Oct Nov Dec
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Concluding remarks

On—going and future work

Optimization of operation conditions (under steady condition)

@ Implementation of trust region methods with DB/HOSVD
models

Numerical modelling under dynamical conditions

@ reduced order modelling of thermofluid dynamics
@ implementation of adaptive control techniques
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