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Motivation

Context

o Hj and Syngas are bound to play a predominant role as energy
carriers in the foreseable future.

o Safety issues arise concerning hydrogen transport, handling and
storage
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o Hj and Syngas are bound to play a predominant role as energy
carriers in the foreseable future.

o Safety issues arise concerning hydrogen transport, handling and
storage

Hydrogen combustion characteristics

i 17 5QUENCH Enmin dr1aNrTION
Hy | 03| 3m/s | 0.6 mm | 0.02mJ | ~50 um
CHy | 1.0 045 m/s | 1.8 mm | 0.21 mJ | ~ 0.8 mm
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Chemistry Reduction

Methodology

@ Selection of a detailed chemical-kinetic mechanism including a
complete set of chemical species and elementary reactions

@ Deletion of elementary steps that do not contribute to the
chemistry under the conditions of interest

@ Introduction of steady-state approximations for intermediate
species with negligible transport rates

@ Truncation of the steady-state algebraic expressions to facilitate
numerical computations
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Chemistry Reduction

Methodology

o For selection of the test cases for validation one needs to
identify the conditions of interest.

o E.g., in gas-turbine combustion the preheated mixture is burned
at elevated pressure.

Combustor

Conventional

Same
Turbine Infet
Temperature

SoLoNOx
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Chemistry Reduction

Methodology

o Validation for lean premixed systems: laminar deflagrations,
homogeneous ignition, nonpremixed ignition

o Validation for nonpremixed sytems: laminar strained diffusion
flames

PREMIXED COMBUSTOR NONPREMIXED COMBUSTOR

NONPREMIXED
AUTOIGNITION?
FLAME

\
\ FLASHBACK? ANCHORING?
1 M A TURBULENT
N < < NONPREMIXED
OXIDIZER ——» '\ OXIDIZER ———\ FLAME

FUEL ——»

OXIDIZER ———» :

PREMIXED
AUTOIGNITION?

FUEL ——»

OXIDIZER ———»
TURBULENT

PREMIXED FLAME
FLAME LIFTOFF/
BLOWOFF?
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Introduction

Chemistry Reduction

Methodology
o Steady planar adiabatic deflagration (pv = p,v)).

dx dx \ L dx

d7 d dT
Wi — = (A=) = Y hw
PutI ax dx( dx) Z “

= Ww;

ay; d (pDT dY,-)
PuVi

o Boundary conditions:

x——-00: Yi=Y,=T-T, =0

o - dy; _ dT _
X — —00 : e = dx =0
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Introduction

Chemistry Reduction

Methodology

o Counterflow diffusion flame (v = —Ay).

ay; d (pDrdY;
A — —Wiwi
pydy+dy(L; dy) ¢
dT d dT

o Boundary conditions:

y——00: Yi=Yio=T-To =0

y — —00 : Yi—Yiee=T—Tc =0
. A




Introduction

Chemistry Reduction

Methodology

o Adiabatic ignition history in an homogeneous isobaric reactor:

dy;
P dt = Wjw; Y,(O) =Yio
pc,, dt Zh,w, TO)=T,
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Detailed H, chemistry

tested.
A Lawetal
O Kwon etal.
300 4 Dowdy etal. !
Detailed mech.
2501 Dpetailed mech ,
without thermal-diff;
200 !
150
100
50
o
10" 10° 10

o San-Diego Mechanism: 8 chemical species, 21 reactions, thoroughly

10000

1000

Extinction Strain Rate (1/s)

0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26
Mole Fraction of H,
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Introduction

B o 0N o Ol

Detailed H, chemistry

H, + OH = H,O +H
H,O + O = 20H
2H+ M =Hy; + M
H+OH+ M=H,0+ M
20+ M =0, + M
H+O+M=O0OH+M
O+4+OH+M=HO, + M
H+ O, +M=HO; + M

14.
15.
16.
17.
18.
19.
20.
21.

10,
HO, + O = OH o Og

HO,; + OH = H>0 + O3
QOH—I—M‘:‘Hon—I—M
2HO> = H>05 + Oy

H,O, + H = HO> + H»
H202 + H= H2O + OH
H,O5 + OH = H>0 + HO»
H,O05, + O = HO, + OH

21 elementary reactions from a detailed mechanism
(University of California, San Diego)
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Introduction

Detailed H, chemistry

3. H2+OH;‘H20+H :

4 14.

5 2H+ M =H, + M 15. HO, + OH = H,O + O,

6 HtOHLM=HO L M 16. QOH—I—M‘:‘Hon—I—M

7' 2 17. 2HO; = Hy05 + O

8. 18. HyO05 + H = HO, + H>
' 19.

0. 20

10. H+02+M\:‘H02+M21'

Crossover Temp.: kirCo, Cu = kior Cu Co, Ca

P T. ~ 1000K at p = latm
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Skeletal mechanism

Skeletal mechanism

12 elementary

H+02
H2+O
H; + OH
H+ 02 +M
H02+H
HO, + H
HO>; + OH
H+ OH+ M
H+H+M
HO, + HO»
HO> + Hz
H,O2 + M

steps, 8 species

OH+O (1)
OH+H (2)
HO+H (3)
HO> +M (4)
20H (5)
Hy + Oy (6)
H,0 + Oz (7)
H,O+M (8)
H+M  (9)

H,04 + 0410)
H,04 + H(11)
20H + M (12)

Justification

Reactions 1-7

Reactions 8-9

Reactions 10-12

describe accurately lean
premixed combustion
(ignition and deflagration)
at atmospheric pressures

Adding recombination
reactions gives better
predictions for
stoichiometric and rich
mixtures. Also allows a
good description of the
equilibrium at high
temperatures.

include the chemistry of
H>0O2, important for
high-pressure flames and
low-temperature ignition.
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12 elementary

H+02
H, + O
H; + OH
H+ 02 +M
HO, + H
HO, + H
HO>; + OH
H+ OH+ M
H+H+M
HO, + HO»
HO> + Hz
H,O2 + M

Skeletal mechanism

Skeletal mechanism

steps, 8 species

= OH+O (1)
= OH+H (2)
= HO+H (3)
— HO+M (4)
— 20H (5)
= Hy+ 0Oy (6)
— H,O+ 02 (7)
= HO+M (8)
= H+M (9)
—  HO3 + 0410)
—  HO2 + H(11)
— 20H + M (12)

Validation

350

300
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2200
150
100
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u
o

latm. |—detailed
LN - - -skeletal

Laminar flame speed of steady planar flames

To = 300K
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Validation

2500

2000

)IVE[d_L

1
5000

2
1/a (s) <107
Peak temperature as a function of strain rate
for a Hp-air counterflow flame
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12 elementary
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Validation

-« 10°

5 50atm 10atm

s

£

« 1atm
=)

o 10

o

x

c

2

E

=)

s .

30 s

© —detailed
E — skeletal
=

0.6 0.8 1
1000K/T

Induction time of a stoichiometric
homogeneous mixture
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The steady-state approximations

[mol/m?s]

3 x10°

x10
3 = Production

o Consumption
O Convection+Diffusion

= Production
o Consumption
O Convection+Diffusion

>
1]
4 0.5]
g 8
s 5
) s,
: i
o I
~0.5]

08 1 12

o 02 04 06 08 1 12

06
 frum] X [

(a) OH (b) H

DY;
Dt

-V - (pDiVY;) = wpiWi — weiW;
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The steady-state approximations
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3 x10°

x10
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o Consumption
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= Production
o Consumption
O Convection+Diffusion

>
1]
4 0.5]
g 8
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) s,
: i
o I
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(a) OH (b) H
DY;
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Introduction

Reduced chemistry in H,-air flames

Steady-State Analysis

All intermediates but H are in
steady state
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Reduced chemistry in H,-air flames

Steady-State Analysis LG L TR T

I
. . . 3H O, = 2H,0 + 2H, ~
All intermediates but H are in 2782 20 wr=w

II
steady state 2H+ M = Hz + M, Wt & War
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Steady-State Analysis

All intermediates but H are in

Reduced chemistry in H,-air flames

H> reduced mechanism
I
3H; + O, = 2H>0 + 2H, w1 ™~ wy

II
steady state 2H+ M = Hz + M, Wt & War

Premixed flame

350,

300

250

200,

150

100

50

Laminar flame speed of steady

planar flames. Top = 300K
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Steady-State Analysis

All intermediates but H are in

Reduced chemistry in H,-air flames

H> reduced mechanism
I
3H; + O, = 2H>0 + 2H, w1 ™~ wy

II
steady state 2H+ M = Hz + M, Wt & War

Premixed flame Diffusion flame

350,

300

250

200,

150

100

50

Variation with strain rate of ,5
the maximum temperature in

a hydrogen-air counterflow
diffusion flame.

To = 300K, P = latm.

2000

Laminar flame speed of steady

planar flames. Top = 300K 15005
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Introduction

Reduced chemistry and autoignition

2-step reduced mechanism

3H,+ 0, — 2H,0+2H

11
2H+M = H,+M

Induction time (s)

of a homogeneous mixture
To = 1200K, p=1latm.
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2-step reduced mechanism

I
3H, + 0, = 2H,O +2H
JH+M = Hpy+M
/
Steady state approximations

HO5 is not in steady-state during autoignition.
det H,+0, — HO;+H

HO, +H — 20H
HO, +H — Hy+ 0O

lo = 1200K, p=latm.
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2-step reduced mechanism

3H; + Oy = 2H,0 + 2H 3-step including HO,
11
2H+M = H,+M H> + Oy g HO, + H

/
Steady state approximations

HO5 is not in steady-state during autoignition.
det H, +0, — HO;+H

HO, +H — 20H
HO, +H — Hy+ 0O

lo = 1200K, p=latm.
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Reduced chemistry and autoignition

2-step reduced mechanism

3H; + Oy = 2H,0 + 2H 3-step including HO,
11
2H+M = H,+M H, + O, g HO, + H

Good agreement is obtained in induction
time for all ¢ by including HO, out of
steady state and a correction for the
branching time accounting for departures
of O and OH from steady state.

Induction time (s)

L
—— a—

of a homogeneous mixture
To = 1200K, p=1latm.
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Combustion problems relevant for safety

applications

Low-Temperature Ignition
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Introduction
Combustion problems relevant for safety

applications

Low-Temperature Ignition Very fuel-lean flames
350
300 g
250
3 200
g
150
N CELLULAR FLAMES
100 FLAME BALLS
50
A
o -1 ’é}y 0 1
10 10 10
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Ignition above crossover

H> reduced mechanism

1
3H, + O, = 2H,O +2H

SH+M = Hy,+M
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Introduction

Ignition above crossover

H> reduced mechanism

1
3H, + O, = 2H,O +2H

SH+M = Hy,+M

Wy = kaCH2 C02 + kir C02 Cu
wn = krCy C02 Gy
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Introduction

Ignition above crossover

H> reduced mechanism

1
3H, + O, = 2H,O +2H

SH+M = Hy,+M

Wy = kaCH2 C02 + kir C02 Cu
wn = krCy C02 Gy

Branched-chain explosion
dCH
dt

= 2k6bCH2 C02 < 2(k1f - k4fCM)C02 Cy; CH(O) =0
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Ignition above crossover

H> reduced mechanism

1
3H, + O, = 2H,O +2H

SH+M = Hy,+M

Wy = kaCH2 C02 + kir C02 Cu
wn = krCy C02 Gy

Branched-chain explosion

dgG
dtH = 2k6bCH2 C02 + 2(k1f — k4fCM)C02 Cad CH(O) =0

_ keb
kir — kar Cy

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications
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Introduction

Ignition above crossover

H> reduced mechanism

1
3H, + O, = 2H,O +2H

SH+M = Hy,+M

Wy = kaCH2 C02 + kir C02 Cu

[ — k4fCM C02 CH o 07 08 09 fOOOK/T 12 13

Branched-chain explosion

dgG
dtH = 2k6bCH2 C02 < 2(k1f - k4fCM)C02 Cy; CH(O) =0
_ keb _
Cu = <G [ez(klf karCu)Copt _ 7| g=_— %0 107
" = kir — kar Cu
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Low-temperature ignition

Initial skeletal mechanism

H+0, = OH+O
H,+O = OH+H
H, +OH = H0+H
H+O0;+M X HO;+M
HO,+H =2 20H
HO,+H = Hy+0;
HO; +OH - H0+ 0
H+OH+M = H0+M
H+H+M = Hy+M
HO, +HO, 2 Hy05+ 0,
HO,+H, 2 H02+H

H>O2 + M 20H+ M

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications
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Low-temperature ignition

Initial skeletal mechanism Validation

H+0O, = OH+O
H,+0 = OH+H
Hy+OH = H0+H
H+O0;+M 2 HO,+M

time (s)

HO, + H — Hy+0»

% o2 v//,/
HO, + HO, & H,0,+ 0, 5
HO, +H, 2 Hy02+H S
H0: +M 2 20H+M P ' 1000K/T "

21 (solid), 8 (dashed), 3 (dot-dashed)
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3-step Reduced Mechanism (Treviiio, 1991)

Initial skeletal mechanism

H+0, = OH+O

L+0 2 OH+H

H, +OH 2 H,0+H
H+Oy+M % HO,+M

H,+0, = HO,+H
HO, +HO, > Hy03+ 0,
HO, +Hy 5 HpO2+H
H 0o +M 5 20H+M

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications
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3-step Reduced Mechanism (Treviiio, 1991)

Initial skeletal mechanism Steady-state intermediates
) H, O, OH
H+0, = OH+O
L+0 2 OH+H
H, - OH 2> H,0+H
H+0,+M 45 HO,+M
Hy+0, = HO,+H
HO, + HO, > H,03 + O
HO, +H, - HyO0,+H
H02+M 2 20H+M
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Introduction

3-step Reduced Mechanism (Treviiio, 1991)

Initial skeletal mechanism

H+ Oy
Hy + O
H> + OH
H+ 02 +M
H> + 07
HO; + HO»
HO> + H»
HyO02 + M

lo = Jo lo = o (o =

OH+ O
OH+ H
H,O +H
HO; + M
HO, + H
H>02 + O3
H,O2 + H
20H + M

Steady-state intermediates

H, O, OH

3-step reduced mechanism

2H; + O,
H>05 + Hy
Hy + 20,

1*
—
iy

—
—

I

—

2H,0
2H,0
2HO,

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

18 / 47



Introduction

3-step Reduced Mechanism (Treviiio, 1991)

Initial skeletal mechanism Steady-state intermediates
) H, O, OH
H+0, — OH+O
H,+0 % OH+H 3-step reduced mechanism
Hy+OH = H0+H 2H, +0, L 2H,0
H+0,+M 5 HO;+M -
H, + Oy s, HO, + H H.O, +Hy, = 2H,0
HO, +HO, % Hy02 + Oy H, + 20, = 2HO,
HO; +Hy - HyO2+H
H,02+M 5 20H+M
wrx = wi+ W+ wy
Wi = —We — Wy + Wy

Ws + ws — 2w — Wy
2

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications
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Introduction

3-step Reduced Mechanism (Treviiio, 1991)

Initial skeletal mechanism Steady-state intermediates
) H, O, OH
H+0; = OH+O
2 .
H,+0 = OH+H 3-step reduced mechanism
gl T*
o+ Ol = RO+ 2H, + 0, — 2H,0
Oz MO HyOp +H, = 2H,0
Hy+0, = HO,+H 202 + 1 1;* 2
HO; + HO; =  Hy02 + O Hy, +20, = 2HO;
HO, +Hy, - Hy0+H
HyO2+M 2 20H+M
W = Wi+ W+ wy
Steady-state expression for H Wpx = —We — W7 + Wg
G — ks Cu, Coy + k7 G, Cao, + 2k Cay0, G Wy + ws — 2w — Wy
(ka Gt — k1) Co, Wi = >

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications
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3-step Reduced Mechanism (Treviiio, 1991)

3-step reduced mechanism

oH, + 0, 5 2H,0
I1*
H202 —+ H2 — 2H20

I
H, +20, = 2HO;

Wi = Wy + ws + wy

W = —Ws— Wy + W

ws + ws — 2w — Wy
2

Wrrr* =

ks Cu, Coy + k7Ca, Cro, + 2ks Cuyo, G
(ks Cm — k1) Co,

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications




Introduction

3-step Reduced Mechanism (Treviiio, 1991)

Validation 3-step reduced mechanism
2H, + 0, & 2,0

1
H202 —+ H2 — 2H20

I

H, +20, = 2HO;

wr = Wi+ W+ wy
7 Wi = —Ws— Wy + wg

T:’ 10712 A
E 7 Wy + Wy — 2w — Wy

S Wi = >

//
1014/~
o9 100087 *
21 (solid), 8 (dashed), 3 (dot-dashed) _ k5Guy Coy + k1 Gy Gao, + 2ks G0, Cur

(k4 CM - kl)C02

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications



| uction

3-step Reduced Mechanism (Treviiio, 1991)

Thermal explosion 3-step reduced mechanism
I*
, o 2H, + O, — 2H,0
\\\ T(K) "
08 \\ 2500 HQOQ —+ H2 - 2H20
u.e“ \\aHzO2 o IIr*
| . H, +20, = 2HO,
04hy S
\ \\\\ 1500
02 ‘\aHOZ ™~
\\\ 1000
[ I;ﬁi 2 . 3 4 5 6
Time (s) Wy = w+w+wy
1 — &l Wie = We — Wyt wg
o7 .
i

ws + ws — 2w — Wy
2

Wrrr* =

ks Cu, Coy + k7Ca, Cro, + 2ks Cuyo, G
(ks Cm — k1) Co,
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3-step Reduced Mechanism (Treviiio, 1991)

Thermal explosion 3-step reduced mechanism
*
, o 2H, + O, — 2H,0
\\\ T(K) "
08 \\ 2500 HQOQ —+ H2 - 2H20
u.e“ \\?H202 2000 11"
y S H, +20, = 2HO,
\ \\\\\ 1500
02 ‘\aHOZ ™~
\\\ 1000
[ l;ﬁi 2 . 3 4 5 6
Time (s) wpx = wy+ ws + wy
=Gl Wie = We — Wyt wg
F= -
Gy
w Wyt ws — 2w — Wy
HO; reaches steady state after a short 1 o 2

initial period

ks Cu, Coy + k7Ca, Cro, + 2ks Cuyo, G
(ks Cm — k1) Co,
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2-step Reduced Mechanism

0y = Wa + w5 — 2w —wy =0

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications




CHO2:W4+W5—2W6—W7:0

2-step reduced mechanism
2H, + 0, = 2H,0
2H,0O 5 H,0, + H,

2k
o =
ka Cor,

Global rates
ws + wr + (1 + a)ws
11—«
(1—1a)(ws + wy) + aws
1—«

Wy ==

Wi =

, ws = ks G, Co,, We = k6C§o2, wr = k7 Cuo, Ca,, wg = kgCuCryo,

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications
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Introduction

2-step Reduced Mechanism

CH02:W4+W5_2W6_W7:0

Global rates

2-step reduced mechanism ws + wr + (1 + a)we
2H, + 0, — 2H,0 “o = 1-a
2H,0 - Hy0,+ H; o (1—1a)(ws + wy) + aws
v l1-—a
a= kfé(i/u , ws = ks Cu, Co,, We = k6C§o2, wy = k7 Cao, Cu,, wg = kg CvCayo,

Conservation equations

dGuo, _ Wiy Init. Conditions
dth Ciyo,(0) = T(0) — T, =0

PCpE = _2hH2O(wI = wn) = hH2ozaJ11

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications
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Introduction

2-step Reduced Mechanism

. 1/2
A= 2
Cuoy, = Wa + ws — 2w — wy = 0 = Cuo, ((2(?)_%)

Global rates

2-step reduced mechanism ws + wr + (1 + a)we
2H, + 0, — 2H,0 “o = 1-a
2H,0 - Hy0,+ H; o (1—1a)(ws + wy) + aws
v l1-—a
a= kfé(i/u , ws = ks Cu, Co,, We = k6C§o2, wy = k7 Cao, Cu,, wg = kg CvCayo,

Conservation equations

dGuo, _ Wiy Init. Conditions
dth Ciyo,(0) = T(0) — T, =0

PCpE = _2hH2O(wI = wn) = hH2ozaJ11
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2-step Reduced Mechanism

Reduced global rates

1+«
Wwr—win = = _akSCMg Cuy0,
1/2
win = k7k€:il/2 Ca, Cog ( _ E) ks Cu, Coy + Cuy0, /
k61/2 (1—a)3/2 2 kg C1\2/18 Cug
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2-step Reduced Mechanism

Reduced global rates

1+«
wr —win = = _akSCM8CH202
1/2

Y kike’? Cu, Cuig ( a) ks Ciy Co, Gy /
I = ——5 7725 - =

k61/2 (1—a)3/2 2 kgCI\Z/18 Cug

B kikg? B3
ks x e RoT 7 RoT
k6

E E+1iE - LF

with 8= —2 ~ 772587275 35 g T,=800K

RO TO - RO TO
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Dimensionless Problem

Dimensionless variables

—2/3 —2/3
o= [(1—a)/3(1+ )34 8 ( = ) ( e ) fe

(kekg)'/? Crig Cug
(1+ a)1/3 e < Ky )2/3 (CH2 )2/3
T= = k C . —~ t
1- a)4/3 (Bq9) 8 Cmg (k6k8)1/2 T
0:137'— To g —2hg,0 Gug
To ’ PCp To
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Introduction

Dimensionless Problem

Dimensionless variables

—2/3 —2/3
o= s () ()

(kekg)'/? Crig Cug
(1+ a)1/3 e ( Ky )2/3 (CH2 )2/3
T= = k C . —~ t
1- a)4/3 (Bq9) 8 Cmg (k6k8)1/2 T
0:137'— To g —2hg,0 Gug
To ’ PCp To

Conservation equations

de (a4 g)l/2f Init. Conditions
dr p(0)=60=0

dé
. gaea +A(a+ cp)1/2e9
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Ignition time

(a+@)2e% (0)=0

do
= = we® + Na+ ¢)/2e%; 9(0) =0
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Ignition time

= (a+ )%’ ¢(0) =0

— = e’ +Na+yp)%e’ 9(0) =0

/38 1/3
_ a\1/3 1/3 2/3 2/3 k5ké Cu Co -5
o= (1-3)" P ma e i s (an) ()~

Initiation counts for T ~ a'/2 when p ~ 6 ~ a but it is negligible at later times
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Introduction

Ignition time

(a+¢)2%e% p(0) =0 %=A+<p1/2
6

> = we? + ANa+p)/%e% 6(0) =0 6 = (2/3)¢** + Ap

/38 1/3
_ a\1/3 1/3 2/3 2/3 k5ké Cu Co -5
o= (1-3)" P ma e i s (an) ()~

Initiation counts for T ~ a'/2 when p ~ 6 ~ a but it is negligible at later times
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Introduction

Ignition time

9
ar € dw T

— = el +Na+p)%% 6(0) =0 6 = (2/3)¢** + Ap

/38 1/3
_ a\1/3 1/3 2/3 2/3 k5ké Cu Co -5
o= (1-3)" P ma e i s (an) ()~

Initiation counts for T ~ a'/2 when p ~ 6 ~ a but it is negligible at later times

fo e exp 3/2+A¢)
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Introduction

Ignition time

de
_ 1/2 0. _ . /\ 1/2
370_ = (a+¢) ; ¢(0)=0 dyp = 2

> = we? + ANa+p)/%e% 6(0) =0 6 = (2/3)¢** + Ap

/38 1/3
_ a\1/3 1/3 2/3 2/3 k5ké Cu Co -5
a=(1- E) (1—a)/3(14+a)?/3(Bq)% P CMZ CM: ~ 10

Initiation counts for T ~ a'/2 when p ~ 6 ~ a but it is negligible at later times

fo e exp 3/2+A¢)

2/3 2/3
A= [ ke /(koks)'/? ] (89)*/? (C ) fims0s g1
(1-a)2(1+0a) G, 2hs0
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Ignition time

dé

1/2 6. _ —A 1/2

32 (a+¢)7/7e” ¢(0) =0 ;e

= = pe’ +Aa+p)/%"; 6(0) =0 0 = (2/3)¢* + A
=

/38 1/3
_ a\1/3 1/3 2/3 2/3 k5ké Cu Co -5
= (1 a E) (1-a)/*(1-+e)*/(Bq)/ (krkg)?/3 C_Mz CM: ~ 10

Initiation counts for T ~ a'/2 when p ~ 6 ~ a but it is negligible at later times

=/ m = (2/3)?/3r(1/3) ~ 2.0444

2/3 2/3
A= [ ke /(koks)'/? ] (89)*/? (C ) fims0s g1
(1-a)2(1+0a) G, 2hs0
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Ignition time
Explicit analytic prediction

(1 —a)4/3 ys . ( Ky )—2/3 ( )—2/3
ti = 20444 — k —_—
(1—1—0[)1/3 (/Bq) ( SCMs) (k6k8)1/2 CMS
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Ignition time
Explicit analytic prediction

_ A)4/3 23 o
ti = 2.0444&@(,)—1/3(/(86\48)—1 (L) ( )

(1+a)1/3 (k6k8)1/2

21-step (solid curves)

t; for p= 1 atm (squares)
t; for p= 10 atm (triangles)
t; for p= 50 atm (circles)

ed-combustion problems relevant for safety applications
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Introduction

Very lean flames and flammability limit

3001

vy [em/s]

CELLULAR FLAMES
100} FLAMEBALLS

AN
)
0 (20
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Skeletal mechanism for very lean flames

Skeletal mechanism
12 elementary steps, 8 species

H+0, = OH+O
H,+0O = OH+H
H, +OH = H,0+H
H+O,+M A HO,+M
HO,+H > 20H
HO, +H = H,+ 0,
HO, +OH = H0+0,
HfOH+M = HO+M
H+H+M = Hy+M
HO; + HO; 2 H02 + 0
HO, +H, = H02+H

H,O2 + M

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications
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Skeletal mechanism for very lean flames

Skeletal mechanism Simplification
12 elementary steps, 8 species

Reactions 1-7 describe accurately lean

deflagrations at

1
R0 o= (ERRD) atmospheric and
H, + O 2 OH +H moderately elevated
3 pressures
H,+OH = H;O+H
H+0O,+M A HO, + M 120 -
HO2 +H > 20H 100 o
6 ,
H02 +H = H2 =+ 02 " J/
HO, + OH - H0+0, =
£ 60 K
40 /’/
20 - Z

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications




One-step reduced mechanism

3. Hy+OH = Hy0+H Giryo = w3 + wry

4f. H+02+M — HO>+M Co = w1 — wy

5f. HO,+H — OH+OH Con = w1 + wy — w3 + 2wsr — wrr

6f. HO>+H — Hy4-05 CH = —w1 + wr + W3 — war — Wsf — Wef

7f. HO2+OH — H20+0; Ciio, = WaF — Wsf — WeF — Wrf

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications
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One-step reduced mechanism

3. Hy+OH = H,O+H Girgo = w3 +wrr
4f. H+-024+M — HO+M o0 =W1 — Wy
5f. HO;+H — OH-+OH (_:0H = w1 + w2 — w3 + 2wsr — wrr
6f. HOx+H — Hy+0, CH = —W1 + W2 + W3 — W4f — Wsf — Wef
7f. HO2+0H — H20+0, Cho, = waf — Wsf — Wer — Wrf
CH2 + Co + %COH + %CH — %CHO2 = —2u)4f
Co2 + Co + %COH + %CH + %CHO2 = —Ww4f

CHZO - {Co + CH — CHoz} = 2wyf
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One-step reduced mechanism

3. Hy4+OH = H,0+H Ciuyo = w3 + wyr

4. H+02+M — HO+M  Co=w;—wp =0

5f. HO,+H — OH+OH COH =wi+wr—w3+2wsr —wyr =0

6f. HO2+H — Ho+03 CH = —w1 + W2 + W3 — Waf — Wsf — Wef =

7f. HO>+0OH — H>O+05 CH02 = waf — wsf — wer —wrzr =0

C02+{Co+lc é H+§CH02}:_W4f
o — { Co - Crr="Croy | = 2wy
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One-step reduced mechanism

3. Hy4+OH = H,0+H Ciuyo = w3 + wrr

4. H+0+M — HO+M  Co=w;—wp =0

5f. HO,+H — OH+OH COH =wi+wr—w3+2wsr —wyr =0

6f. HO2+H — Ho+0; CH = —w1 + W2 + W3 — Waf — Wsf — Wef =

7f. HO>+0OH — H>O+05 CH02 = waf — wsf — wer —wrzr =0

C02+{Co+lc é H+§CH02}:_W4f
o — { Co - Crr="Croy | = 2wy
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One-step reduced mechanism

Ci = —w1+wy+ w3 —war — wsr —wer =0

Cuo, = war — wsr — wer — wrr =0
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One-step reduced mechanism

Ci = —w1+wy+ w3 —war — wsr —wer =0

Cuo, = war — wsr — wer — wrr =0
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One-step reduced mechanism
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One-step reduced mechanism

kot Gy, kif
° Con =", GGy
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Introduction

One-step reduced mechanism

kot Gy, kif
° Con =", GGy

aksr Gy, kir
= -1
° G Gkip <54k4f Cu )
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Introduction

One-step reduced mechanism

kor Cu
o COH = 2fC 2 ( klf 1)

Hkis \GkarCu
aksr Cy kir
Co = 2 —1
¢ o Gkip <&k4fCM )
k
o Cio, = LN

(f+ G)k7f H2
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One-step reduced mechanism

kar G
o Co — 2fc2<_k1f _1)

Hkip  \ 0kar G
aksr Gy, kir
- —1
° G Gkip <54k4fCM )
_ kf
® Cuor = (7 Gy

o ksr + ker  kar Cay o= 1_}_1 {1_’_472“(1 ( ke 1)}1/2
kir  kar Cu Co, & \ ctkar Cua

1+
G =25 1 211 42(3 +50)/f + (14 3/ F1Y2 — 1
~ _ korf/(ksr + k6f) +G _ _kapCryo ki kopkor
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One-step reduced mechanism

o Cooo kor Gy, kuf 3
o }‘fklb 54k4fCM

aksr Gy, kir
= -1
° G Gkip <54k4f Cu )

_ kf
® Cuo, = (f + G)kir G,

fo kor tker ks Cuy H=1+1 [1+4~yzbfl( o _1)}1/2 =1
kze kar G Co, o Lgey:

1+
6= 257 1 211 42(3 +95u)/f + (14 33/ F1Y2 — 1)
~ _ korf/(ksr + k6f) +G _ _kapCryo ki kopkor
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One-step reduced mechanism

01 ZZZ C o i k2fk3fCI_2I2 ( klf 3 1)
T HG kapkar G Co, \ @kar Gy

- A M0, Ot O

. o H+ 0, + M % HO, + M

-20 -10 0 10 20 30
X [mm]

@ The concentration of the radicals H, O and OH vanish at a
crossover temperature T, defined by kir = akyr Gy

1 kir korkar o . =
*YTHG <5zk4fCM : 1) Kib Cop i kar > Brkat

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications
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Kinetically-controlled lean flammability limit

¢ = 0.251, p = latm, Tu = 300K

kif = akar Gy — Te

1600
%1400 T kﬁff/(kaf:'é(6f) + G
1200 Fo ksr + ke k3r Ca,
1000 ke kar Gu Co,
8092 03 04 05 06 07
]

@ The crossover temperature at the lean flammability limit (T.); is
defined by kif = kar Gy because & =1 for Gy, < 1.

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications
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Numerical computation of planar flames

120 B
1001 /// R .
K Solid curve: 21-step mech.
8oy | Dashed curve: 7-step mech.
E 601 ///
40t L7
% 1 kuif korkar

20( y o w=—| = -1 C;

< HG \ akqr Gy kip 2
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120

1001

801

601

v [em/s]

401

201

Numerical computation of planar flames

Solid curve: 21-step mech.
Dashed curve: 7-step mech.
Thick dot-dashed: 1-step

Thin dot-dashed: 1-step (H = 1)

1 kir korkar
- 1 C
“~HG (akMCM ) kip 2
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Introduction

Very lean flames and flammability limit

CELLULAR FLAMES
100} FLAMEBALLS

AN
%
0 L2
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Introduction

Detailed numerical description of steady flame

balls

1.dpy,2dT 0 dT _ dv; _ _
e Al = Qe — X2 b mi ar=a =0at r=0

H oD (G + 2GR = i\ T(50) = Too = Yi(00) = Yieo =0

@ m;: San Diego 21-step mechanism with 8 reacting species (O, Ha,
H,0, O, H, OH, HO,, H,0,)

@ Molecular diffusion: Fick's Law with Smooke's model:
(M o)/ (N co)o=(T/To)%", Le; = constant

@ Thermal diffusion with ay = —0.23 and ay, = —0.29
o Qr: Statistical Narrow Band model (SNB)

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications
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Detailed numerical description of steady flame

balls

r 1300~
1200 -
0.01 00
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1100
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0.0 9000 0.1 0.2 0.3
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One-step chemistry description

intermediates have very small concentrations and are in steady
state, while the main species react according to

2H, + O — 2H,0

with a rate given by
IFklf > ak“'fCM SW= % (akf;fCM B ) k2l§1i3f (pYHz/WH2)2
IFk]_f < ak4,cCM cw=20

The crossover temperature, T, is defined from kif = akyr Gy in

1
terms of the rates of the elementary reactions H + O, = OH + O
and H + 02+M—> H02 + M with a factor 1/6 <« < 1 that

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications
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Radiation models

o Characteristic absorption length a;! ~ 10cm (a, = absorption
coefficient

o Optically thin approximation is accurate enough for description of
flame-balls near extinction

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications



Introduction

Steady flame balls

enables thermal diffusion to be incorporated in a single
diffusion term as a function of Y = (T /T )*2 Yy, with
increased diffusivity D = (T /T )”“"2 Dy, so that

ICKIan-like

L8 (VPAT) = i 0p (W W) Yo (T* — T4) — Wi
1d (PDoyr*dYo,\ 1 4 (PDuyor*dYu,o\ _ 1 d [ pDr® dy\ _
Par\ Wo, dr )= TP\ Wino ar )= Pdar 2w, ar ) T Y
with boundary conditions
r=0: dT/dr=dY;/dr=0
r = oQ . T_TOO:Y_YHQOO:YOQ_YO2<X,:YH2O:0
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Steady flame balls

diffusion term as a function of Y = (T /T )*2 Y}, with
increased diffusivity D = (T /T )”“"2 Dy, so that

%%(A d,)_4mhduxmqm&ﬂ)nwﬂT4 T4) — 2W, qw
1 d
r2dr

_1d (pDRav) _
T or2dr \2Wy, dr ) T

with boundary conditions

r=0: dT/dr=dY;/dr=0
r=oc0: T—Teww=Y—Yy, =0

Assuming for simplicity Dy,o o< Do, o< D leads to

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications



For 3 > 1 the reaction occurs
in a thin layer where

Vi /Yy, ~ (T = Te)/Te ~ 7

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications
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The reaction-sheet approximation with
7_111‘(1
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Characteristic scales near turning point

Integrating with boundary conditions

dL —=d¥ —patr=0and T— T =Y — Yi,.. =0 as r — o0

leads to (A oc TY, pD o T7)

LH2 Cpoo Too ( T >1+v—'y

l1+v—vy T—oo

1+v—y _
at the flame (Y = 0): (L) 14 %‘
2 =poo 100

Integrating for r > rr with w = 0:

(&), = L= (T¢/Toc) -1 Vit
or/)f+ = 14v (T¢/Too)'[(Tr/Too)t¥=7-1] rf

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications
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Characteristic scales

(6_Y) e (T¢/Too) -1 Ha o
or Jf+ = 14v (Te/Too)'[(Tr/Too)™V=7—1] 1

2
pD (Y _ _ 1 ke korksr ((PYH,
Wy (8r)f+ fo wdY |lw = Zg (ak4fCM 1) ki \ W,

As Tf — TC,

Y
ak CM -1, (W)H_’O' rf — &0

ry Extinction occurs for T — T ~ ,3_17-: (o1 — ¢/o ~ ﬂ_l)

. ( 8°DcGeHe )1/ 2
2(kor kst [kib)c(pe Yy /Whi,)
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Extinction limit analysis for 3! ~ cIn(e

The effect of far-field radiation introduces an apparent ambient
temperature T} < T, such that

(Too = T2)/Too ~eln(e™ ) ~ g1

Rf = rf/er ¢ :6(¢_ ¢?)' A= /B(Too — T:o)/Too ~ O(l)

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications G
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(Some) Conclusions

@ Reduced-kinetic mechanisms appropriate for low-temperature
ignition and ultra-lean premixed combustion have been derived and
used to develop explicit analytic expressions for quantities of
practical interest in connection with safety applications (i.e., ignition
times and flammability limits).

@ The reduced-kinetic descriptions can be used to shorten
computational times in numerical calculations and can also aid
further analytical work on deflagration and flame-ball stability.
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