#### The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

5th Meeting of the Spanish Section of the Combustion Institute

| A. L. Sánchez                 | D. F. Galisteo | A. Liñán      | F.A. Williams   |
|-------------------------------|----------------|---------------|-----------------|
| P. Boivin                     | C. Jiménez     | ETSIA, Madrid | UCSD, San Diego |
| E. F. Tarrazo<br>UC3M, Madrid | CIEMAT, Madrid |               |                 |

5th Meeting of the Spanish Section of the Combustion Institute

May 23<sup>th</sup> 2011, Santiago, Spain.

# **Motivation**

#### Context

- $\bullet~H_2$  and Syngas are bound to play a predominant role as energy carriers in the foreseable future.
- Safety issues arise concerning hydrogen transport, handling and storage

# **Motivation**

#### Context

- $\bullet~H_2$  and Syngas are bound to play a predominant role as energy carriers in the foreseable future.
- Safety issues arise concerning hydrogen transport, handling and storage

#### Hydrogen combustion characteristics

|                 | Li  | Vj       | $\delta_{ m QUENCH}$ | E <sub>min</sub> | $\delta_{ m ignition}$ |
|-----------------|-----|----------|----------------------|------------------|------------------------|
| H <sub>2</sub>  | 0.3 | 3 m/s    | 0.6 mm               | 0.02 mJ          | $\sim$ 50 $\mu { m m}$ |
| CH <sub>4</sub> | 1.0 | 0.45 m/s | 1.8 mm               | 0.21 mJ          | $\sim 0.8~\text{mm}$   |



#### Methodology

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications



#### Methodology

 Selection of a detailed chemical-kinetic mechanism including a complete set of chemical species and elementary reactions

#### Methodology

- Selection of a detailed chemical-kinetic mechanism including a complete set of chemical species and elementary reactions
- 2 Deletion of elementary steps that do not contribute to the chemistry under the conditions of interest

#### Methodology

- Selection of a detailed chemical-kinetic mechanism including a complete set of chemical species and elementary reactions
- 2 Deletion of elementary steps that do not contribute to the chemistry under the conditions of interest
- Introduction of steady-state approximations for intermediate species with negligible transport rates

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

#### Methodology

- Selection of a detailed chemical-kinetic mechanism including a complete set of chemical species and elementary reactions
- Oblight Deletion of elementary steps that do not contribute to the chemistry under the conditions of interest
- Introduction of steady-state approximations for intermediate species with negligible transport rates
- Truncation of the steady-state algebraic expressions to facilitate numerical computations



#### Methodology

- For selection of the test cases for validation one needs to identify the conditions of interest.
- E.g., in gas-turbine combustion the preheated mixture is burned at elevated pressure.





### Methodology

- Validation for lean premixed systems: laminar deflagrations, homogeneous ignition, nonpremixed ignition
- Validation for nonpremixed sytems: laminar strained diffusion flames



#### Methodology

• Steady planar adiabatic deflagration ( $\rho v = \rho_u v_l$ ).

$$\rho_{u} \mathbf{v}_{l} \frac{\mathrm{d}Y_{i}}{\mathrm{d}x} - \frac{\mathrm{d}}{\mathrm{d}x} \left( \frac{\rho D_{T}}{L_{i}} \frac{\mathrm{d}Y_{i}}{\mathrm{d}x} \right) = W_{i} \omega_{i}$$
$$\rho_{u} \mathbf{v}_{l} c_{\rho} \frac{\mathrm{d}T}{\mathrm{d}x} - \frac{\mathrm{d}}{\mathrm{d}x} \left( \lambda \frac{\mathrm{d}T}{\mathrm{d}x} \right) = \sum_{i} h_{i} \omega_{i}$$

Boundary conditions:

$$\begin{array}{rcl} x \rightarrow -\infty : & Y_i - Y_{iu} = T - T_u & = 0 \\ x \rightarrow -\infty : & \frac{\mathrm{d}Y_i}{\mathrm{d}x} = \frac{\mathrm{d}T}{\mathrm{d}x} & = 0 \end{array}$$

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

### Methodology

• Counterflow diffusion flame (v = -Ay).

$$\rho A y \frac{\mathrm{d} Y_i}{\mathrm{d} y} + \frac{\mathrm{d}}{\mathrm{d} y} \left( \frac{\rho D_T}{L_i} \frac{\mathrm{d} Y_i}{\mathrm{d} y} \right) = -W_i \omega_i$$
$$\rho A c_\rho y \frac{\mathrm{d} T}{\mathrm{d} y} + \frac{\mathrm{d}}{\mathrm{d} y} \left( \lambda \frac{\mathrm{d} T}{\mathrm{d} y} \right) = -\sum_i h_i \omega_i$$

• Boundary conditions:

$$\begin{array}{ll} y \rightarrow -\infty : & Y_i - Y_{i-\infty} = T - T_{-\infty} &= 0 \\ y \rightarrow -\infty : & Y_i - Y_{i\infty} = T - T_{\infty} &= 0 \end{array}$$

#### Methodology

• Adiabatic ignition history in an homogeneous isobaric reactor:

$$\rho \frac{\mathrm{d}Y_i}{\mathrm{d}t} = W_i \omega_i \qquad Y_i(0) = Y_{io}$$
$$\rho c_p \frac{\mathrm{d}T}{\mathrm{d}t} = \sum_i h_i \omega_i \qquad T(0) = T_o$$

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications



# **Detailed** H<sub>2</sub> chemistry

 San-Diego Mechanism: 8 chemical species, 21 reactions, thoroughly tested.



# **Detailed** H<sub>2</sub> chemistry

1. 
$$H + O_2 \rightleftharpoons OH + O$$
  
2.  $H_2 + O \rightleftharpoons OH + H$   
3.  $H_2 + OH \rightleftharpoons H_2O + H$   
4.  $H_2O + O \rightleftharpoons 2OH$   
5.  $2H + M \rightleftharpoons H_2 + M$   
6.  $H + OH + M \rightleftharpoons H_2O + M$   
7.  $2O + M \rightleftharpoons O_2 + M$   
8.  $H + O + M \rightleftharpoons OH + M$   
9.  $O + OH + M \rightleftharpoons HO_2 + M$   
10.  $H + O_2 + M \rightleftharpoons HO_2 + M$ 

11. 
$$HO_2 + H \Rightarrow H_2 + O_2$$
  
12.  $HO_2 + H \Rightarrow H_2 + O_2$   
13.  $HO_2 + H \Rightarrow H_2O + O$   
14.  $HO_2 + O \Rightarrow OH + O_2$   
15.  $HO_2 + OH \Rightarrow H_2O + O_2$   
16.  $2OH + M \Rightarrow H_2O_2 + M$   
17.  $2HO_2 \Rightarrow H_2O_2 + O_2$   
18.  $H_2O_2 + H \Rightarrow HO_2 + H_2$   
19.  $H_2O_2 + H \Rightarrow H_2O + OH$   
20.  $H_2O_2 + OH \Rightarrow H_2O + HO_2$   
21.  $H_2O_2 + O \Rightarrow HO_2 + OH$ 

21 elementary reactions from a detailed mechanism (University of California, San Diego)

```
(Introduction)
```

Detailed  $H_2$  chemistry

| 1        | $H + 0_2 \rightarrow 0H + 0$             | 11. |                                            |
|----------|------------------------------------------|-----|--------------------------------------------|
| 1.       |                                          | 12. |                                            |
| ۷.       | $H_2 + 0 \rightleftharpoons 0H + H$      | 13  |                                            |
| 3.       | $H_2 + OH \rightleftharpoons H_2O + H$   | 14  |                                            |
| 4        |                                          | 14. |                                            |
| г.<br>Г  |                                          | 15. | $HO_2 + OH \Rightarrow H_2O + O_2$         |
| 5.       | $2H + IVI \rightleftharpoons H_2 + IVI$  | 16  | $2OH + M \rightarrow H_2O_2 + M$           |
| 6.       | $H + OH + M \rightleftharpoons H_2O + M$ | 17  |                                            |
| 7        | _                                        | 17. | $2HO_2 \rightleftharpoons H_2O_2 + O_2$    |
| · · ·    |                                          | 18. | $H_2O_2 + H \rightleftharpoons HO_2 + H_2$ |
| ð.       |                                          | 19. |                                            |
| 9.<br>10 |                                          | 20. |                                            |
| 10.      | $\Pi + O_2 + W \equiv \Pi O_2 + W$       | 21. |                                            |
|          |                                          | -   |                                            |

Crossover Temp.:  $k_{1f}C_{O_2}C_{H} = k_{10f}C_{M}C_{O_2}C_{H}$ 

$$k_{1f} = k_{10f} \frac{p}{R_o T} \begin{cases} T_c \simeq 1000 \text{K at } p = 1 \text{atm} \\ T_c \simeq 1500 \text{K at } p = 100 \text{atm} \end{cases}$$

Η

# **Skeletal mechanism**

#### Skeletal mechanism 12 elementary steps, 8 species

| $\mathrm{H} + \mathrm{O}_2$              | $\rightleftharpoons$ | OH + O                         | (1)  |  |
|------------------------------------------|----------------------|--------------------------------|------|--|
| $\mathrm{H}_{2} + \mathrm{O}$            | $\rightleftharpoons$ | $\mathrm{OH} + \mathrm{H}$     | (2)  |  |
| $\mathrm{H}_{2} + \mathrm{OH}$           | $\rightleftharpoons$ | $\mathrm{H_2O} + \mathrm{H}$   | (3)  |  |
| $\mathrm{H} + \mathrm{O}_2 + \mathrm{M}$ | $\rightarrow$        | $\mathrm{HO}_2 + \mathrm{M}$   | (4)  |  |
| $\mathrm{HO}_2 + \mathrm{H}$             | $\rightarrow$        | 2OH                            | (5)  |  |
| $\mathrm{HO}_{2} + \mathrm{H}$           | $\rightleftharpoons$ | $\mathrm{H}_2 + \mathrm{O}_2$  | (6)  |  |
| $\mathrm{HO}_{2} + \mathrm{OH}$          | $\rightarrow$        | $\mathrm{H_2O} + \mathrm{O_2}$ | (7)  |  |
| $+ \mathrm{OH} + \mathrm{M}$             | $\rightleftharpoons$ | $\rm H_2O + M$                 | (8)  |  |
| H + H + M                                | $\rightleftharpoons$ | $\mathrm{H}_{2} + \mathrm{M}$  | (9)  |  |
| $\mathrm{HO}_2 + \mathrm{HO}_2$          | $\rightarrow$        | $H_2O_2 + O_2$                 | (10) |  |
| $\mathrm{HO}_2 + \mathrm{H}_2$           | <u> </u>             | $H_2O_2 + H($                  | (11) |  |
| $\mathrm{H_2O_2} + \mathrm{M}$           | $\rightarrow$        | 2OH + M (                      | (12) |  |

#### **Justification**

| Reactions 1-7   | describe accurately <b>lean</b><br>premixed combustion<br>(ignition and deflagration)<br>at atmospheric pressures                                                                                                |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reactions 8-9   | Adding recombination<br>reactions gives better<br>predictions for<br><b>stoichiometric and rich</b><br>mixtures. Also allows a<br>good description of the<br><b>equilibrium at high</b><br><b>temperatures</b> . |
| Reactions 10-12 | include the chemistry of $H_2O_2$ , important for high-pressure flames and low-temperature ignition                                                                                                              |

# Skeletal mechanism

#### Skeletal mechanism Validation 12 elementary steps, 8 species 350r $H + O_2 \rightleftharpoons OH + O$ (1)1atm. detailed $H_2 + O \rightleftharpoons OH + H$ (2) 300 skeletal Flame velocity (cm/s) 250 $H_2 + OH \implies H_2O + H$ (3) $H + O_2 + M \rightarrow HO_2 + M$ (4) 200 10atn $HO_2 + H \rightarrow 2OH$ (5) 150 $HO_2 + H \rightleftharpoons H_2 + O_2$ (6) 100 50atm $HO_2 + OH \rightarrow H_2O + O_2$ (7) 50 $H + OH + M \rightleftharpoons H_2O + M$ (8) 10<sup>0</sup> $H + H + M \rightleftharpoons H_2 + M$ (9) Φ $HO_2 + HO_2 \rightarrow H_2O_2 + O(10)$ Laminar flame speed of steady planar flames $HO_2 + H_2 \rightarrow H_2O_2 + H(11)$ $T_0 = 300K$ $H_2O_2 + M \rightarrow 2OH + M$ (12)

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

11 / 47

10

# Skeletal mechanism

#### Skeletal mechanism 12 elementary steps, 8 species $H + O_2 \rightleftharpoons OH + O$ (1) $H_2 + O \rightleftharpoons OH + H$ (2) (3) $H_2 + OH \rightleftharpoons H_2O + H$ $H + O_2 + M \rightarrow HO_2 + M$ (4) $HO_2 + H \rightarrow 2OH$ (5) $HO_2 + H \rightleftharpoons H_2 + O_2$ (6) $HO_2 + OH \rightarrow H_2O + O_2$ (7) $H + OH + M \rightleftharpoons H_2O + M$ (8) $H + H + M \rightleftharpoons H_2 + M$ (9) $HO_2 + HO_2 \rightarrow H_2O_2 + O(10)$ $HO_2 + H_2 \rightarrow H_2O_2 + H(11)$ $H_2O_2 + M \rightarrow 2OH + M$ (12)

#### Validation



The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

# Skeletal mechanism

#### Skeletal mechanism 12 elementary steps, 8 species

| $\mathrm{H} + \mathrm{O}_2$              | $\rightleftharpoons$ | OH + O                         | (1)  |
|------------------------------------------|----------------------|--------------------------------|------|
| $\mathrm{H}_{2} + \mathrm{O}$            | $\rightleftharpoons$ | $\mathrm{OH} + \mathrm{H}$     | (2)  |
| $\mathrm{H}_{2} + \mathrm{OH}$           | $\rightleftharpoons$ | $\mathrm{H_2O} + \mathrm{H}$   | (3)  |
| $\mathrm{H} + \mathrm{O}_2 + \mathrm{M}$ | $\rightarrow$        | $\mathrm{HO}_2 + \mathrm{M}$   | (4)  |
| $\mathrm{HO}_{2} + \mathrm{H}$           | $\rightarrow$        | 2OH                            | (5)  |
| $\mathrm{HO}_{2} + \mathrm{H}$           | $\rightleftharpoons$ | $\mathrm{H}_2 + \mathrm{O}_2$  | (6)  |
| $\mathrm{HO}_2 + \mathrm{OH}$            | $\rightarrow$        | $\mathrm{H_2O} + \mathrm{O_2}$ | (7)  |
| I + OH + M                               | $\rightleftharpoons$ | $\rm H_2O + M$                 | (8)  |
| H + H + M                                | $\rightleftharpoons$ | $\mathrm{H}_{2} + \mathrm{M}$  | (9)  |
| $\mathrm{HO}_2 + \mathrm{HO}_2$          | $\rightarrow$        | $H_2O_2 + O_2$                 | (10) |
| $\mathrm{HO}_2 + \mathrm{H}_2$           | $\rightarrow$        | $H_2O_2 + H($                  | (11) |
| $\mathrm{H_2O_2} + \mathrm{M}$           | <u> </u>             | $2 \mathrm{OH} + \mathrm{M}$ ( | (12) |
|                                          |                      |                                |      |

#### Validation





## The steady-state approximations

• Laminar premixed flame, p = 1 atm,  $T_u = 300$  K, and  $\phi = 0.8$ :



The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications



# The steady-state approximations

• Laminar premixed flame, p = 1 atm,  $T_u = 300$  K, and  $\phi = 0.8$ :



The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

#### **Steady-State Analysis**

All intermediates but H are in steady state

#### **Steady-State Analysis**

All intermediates but H are in steady state

# $\label{eq:H2} \begin{array}{ll} \displaystyle \frac{\mathbf{H}_2 \ \text{reduced mechanism}}{3 \mathrm{H}_2 + \mathrm{O}_2 \stackrel{\mathrm{I}}{\rightleftharpoons} 2 \mathrm{H}_2 \mathrm{O} + 2 \mathrm{H}, & \omega_\mathrm{I} \simeq w_\mathrm{I} \\ & \\ \displaystyle 2 \mathrm{H} + \mathrm{M} \stackrel{\mathrm{II}}{\rightleftharpoons} \mathrm{H}_2 + \mathrm{M}, & \omega_\mathrm{II} \simeq w_\mathrm{4f} \end{array}$

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

E

#### **Steady-State Analysis**

All intermediates but H are in steady state

| I <sub>2</sub> reduced mechanism                                                                                |                                  |
|-----------------------------------------------------------------------------------------------------------------|----------------------------------|
| $3\mathrm{H}_2 + \mathrm{O}_2 \stackrel{\mathrm{I}}{\rightleftharpoons} 2\mathrm{H}_2\mathrm{O} + 2\mathrm{H},$ | $\omega_{ m I}\simeq w_{ m I}$   |
| $2\mathrm{H} + \mathrm{M} \stackrel{\mathrm{II}}{\rightleftharpoons} \mathrm{H}_2 + \mathrm{M},$                | $\omega_{ m II}\simeq w_{ m 4f}$ |



The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

#### **Steady-State Analysis**

All intermediates but H are in steady state

# $\label{eq:H2} \frac{\mathbf{H}_2 \ \text{reduced mechanism}}{3 \mathrm{H}_2 + \mathrm{O}_2 \overset{\mathrm{I}}{\rightleftharpoons} 2 \mathrm{H}_2 \mathrm{O} + 2 \mathrm{H}, \qquad \omega_\mathrm{I} \simeq w_1} \\ 2 \mathrm{H} + \mathrm{M} \overset{\mathrm{II}}{\rightleftharpoons} \mathrm{H}_2 + \mathrm{M}, \qquad \omega_\mathrm{II} \simeq w_{4f}$



#### 2-step reduced mechanism



The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

#### 2-step reduced mechanism

$$\begin{array}{rcl} 3\mathrm{H}_2 + \mathrm{O}_2 & \stackrel{\mathrm{I}}{\rightleftharpoons} & 2\mathrm{H}_2\mathrm{O} + 2\mathrm{H} \\ \\ 2\mathrm{H} + \mathrm{M} & \stackrel{\mathrm{II}}{\rightleftharpoons} & \mathrm{H}_2 + \mathrm{M} \end{array}$$



3

#### 2-step reduced mechanism

$$\begin{array}{rcl} 3\mathrm{H}_2 + \mathrm{O}_2 & \stackrel{\mathrm{I}}{\rightleftharpoons} & 2\mathrm{H}_2\mathrm{O} + 2\mathrm{H} \\ \\ 2\mathrm{H} + \mathrm{M} & \stackrel{\mathrm{II}}{\rightleftharpoons} & \mathrm{H}_2 + \mathrm{M} \end{array}$$

$$\begin{array}{rll} \textbf{step including HO}_2 \\ H_2 + O_2 & \stackrel{\mathrm{III}}{\rightleftharpoons} & \mathrm{HO}_2 + \mathrm{H} \end{array}$$

# Steady state approximations $10^{-4}$ $HO_2$ is not in steady-state during autoignition. $H_2 + O_2 \rightarrow HO_2 + H$ det $HO_2 + H \rightarrow 2OH$ $HO_2 + H \rightarrow H_2 + O_2$ $T_0 = 1200 \text{K}, p = 1 \text{atm}.$ 10 The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

#### 2-step reduced mechanism

$$\begin{array}{rcl} 3\mathrm{H}_2 + \mathrm{O}_2 & \stackrel{\mathrm{I}}{\rightleftharpoons} & 2\mathrm{H}_2\mathrm{O} + 2\mathrm{H} \\ \\ 2\mathrm{H} + \mathrm{M} & \stackrel{\mathrm{II}}{\rightleftharpoons} & \mathrm{H}_2 + \mathrm{M} \end{array}$$



**3-step including HO**<sub>2</sub> H<sub>2</sub> + O<sub>2</sub>  $\stackrel{\text{III}}{\rightleftharpoons}$  HO<sub>2</sub> + H

Good agreement is obtained in induction time for all  $\phi$  by including HO<sub>2</sub> out of steady state and a correction for the branching time accounting for departures of O and OH from steady state.

Induction time (s)

of a homogeneous mixture  $T_0 = 1200$  K, p=1 atm.

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

# Combustion problems relevant for safety applications



The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

# Combustion problems relevant for safety applications



The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

#### $\mathbf{H}_2$ reduced mechanism

 $\begin{array}{rcl} 3\mathrm{H}_2 + \mathrm{O}_2 & \stackrel{\mathrm{I}}{\rightleftharpoons} & 2\mathrm{H}_2\mathrm{O} + 2\mathrm{H} \\ \\ 2\mathrm{H} + \mathrm{M} & \stackrel{\mathrm{II}}{\rightleftharpoons} & \mathrm{H}_2 + \mathrm{M} \end{array}$ 

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

#### $\mathbf{H}_2$ reduced mechanism

 $\begin{array}{rcl} 3\mathrm{H}_2 + \mathrm{O}_2 & \stackrel{\mathrm{I}}{\rightleftharpoons} & 2\mathrm{H}_2\mathrm{O} + 2\mathrm{H} \\ \\ 2\mathrm{H} + \mathrm{M} & \stackrel{\mathrm{II}}{\rightleftharpoons} & \mathrm{H}_2 + \mathrm{M} \end{array}$ 

#### $\mathbf{H}_2$ reduced mechanism

 $\begin{array}{rcl} 3H_2+O_2 & \stackrel{I}{\rightleftharpoons} & 2H_2O+2H \\ \\ 2H+M & \stackrel{II}{\rightleftharpoons} & H_2+M \end{array}$ 

$$\omega_{\rm I} = k_{6b}C_{\rm H_2}C_{\rm O_2} + k_{1f}C_{\rm O_2}C_{\rm H} \omega_{\rm II} = k_{4f}C_{\rm M}C_{\rm O_2}C_{\rm H}$$

#### **Branched-chain explosion**

$$\frac{\mathrm{d}C_{\rm H}}{\mathrm{d}t} = 2k_{6b}C_{\rm H_2}C_{\rm O_2} + 2(k_{1f} - k_{4f}C_{\rm M})C_{\rm O_2}C_{\rm H}; \quad C_{\rm H}(0) = 0$$

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

#### $\mathbf{H}_2$ reduced mechanism

 $\begin{array}{rcl} 3H_2+O_2 & \stackrel{I}{\rightleftharpoons} & 2H_2O+2H \\ \\ 2H+M & \stackrel{II}{\rightleftharpoons} & H_2+M \end{array}$ 

$$\omega_{\rm I} = k_{6b}C_{\rm H_2}C_{\rm O_2} + k_{1f}C_{\rm O_2}C_{\rm H} \omega_{\rm II} = k_{4f}C_{\rm M}C_{\rm O_2}C_{\rm H}$$

#### **Branched-chain explosion**

$$\frac{\mathrm{d}C_{\rm H}}{\mathrm{d}t} = 2k_{6b}C_{\rm H_2}C_{\rm O_2} + 2(k_{1f} - k_{4f}C_{\rm M})C_{\rm O_2}C_{\rm H}; \quad C_{\rm H}(0) = 0$$

$$C_{\rm H} = \varepsilon C_{{
m H}_2} \left[ e^{2(k_{1f} - k_{4f}C_{\rm M})C_{{
m O}_2}t} - 1 \right]; \quad \varepsilon = rac{k_{6b}}{k_{1f} - k_{4f}C_{\rm M}} \sim 10^{-6}$$

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications
# Ignition above crossover

#### $\mathbf{H}_2$ reduced mechanism

$$\begin{array}{rcl} 3\mathrm{H}_2 + \mathrm{O}_2 & \stackrel{\mathrm{I}}{\rightleftharpoons} & 2\mathrm{H}_2\mathrm{O} + 2\mathrm{H} \\ \\ 2\mathrm{H} + \mathrm{M} & \stackrel{\mathrm{II}}{\rightleftharpoons} & \mathrm{H}_2 + \mathrm{M} \end{array}$$

$$\omega_{\rm I} = k_{6b}C_{{\rm H}_2}C_{{\rm O}_2} + k_{1f}C_{{\rm O}_2}C_{{\rm H}} \omega_{{\rm II}} = k_{4f}C_{{\rm M}}C_{{\rm O}_2}C_{{\rm H}}$$



#### **Branched-chain explosion**

$$\frac{\mathrm{d}C_{\rm H}}{\mathrm{d}t} = 2k_{6b}C_{\rm H_2}C_{\rm O_2} + 2(k_{1f} - k_{4f}C_{\rm M})C_{\rm O_2}C_{\rm H}; \quad C_{\rm H}(0) = 0$$

$$C_{\rm H} = \varepsilon C_{{
m H}_2} \left[ e^{2(k_{1f} - k_{4f}C_{\rm M})C_{{
m O}_2}t} - 1 \right]; \quad \varepsilon = rac{k_{6b}}{k_{1f} - k_{4f}C_{\rm M}} \sim 10^{-6}$$

# Low-temperature ignition

#### Initial skeletal mechanism

| $\mathrm{H} + \mathrm{O}_2$              | $\stackrel{1}{\rightleftharpoons}$ | OH + O                         |
|------------------------------------------|------------------------------------|--------------------------------|
| $\mathrm{H}_{2} + \mathrm{O}$            | $\stackrel{2}{\rightleftharpoons}$ | $\mathrm{OH} + \mathrm{H}$     |
| $\mathrm{H}_{2} + \mathrm{OH}$           | $\stackrel{3}{\rightleftharpoons}$ | $\mathrm{H_2O} + \mathrm{H}$   |
| $\mathrm{H} + \mathrm{O}_2 + \mathrm{M}$ | <u>4</u>                           | $\mathrm{HO}_2 + \mathrm{M}$   |
| $\mathrm{HO}_2 + \mathrm{H}$             | _5_                                | 2OH                            |
| $\mathrm{HO}_{2} + \mathrm{H}$           | $\stackrel{6}{\rightleftharpoons}$ | $\mathrm{H}_2 + \mathrm{O}_2$  |
| $\mathrm{HO}_2 + \mathrm{OH}$            | _7_                                | $\mathrm{H_2O} + \mathrm{O_2}$ |
| H + OH + M                               | ***                                | $\rm H_2O + M$                 |
| $\rm H + \rm H + \rm M$                  | <sup>9</sup><br>₩                  | $\mathrm{H}_{2} + \mathrm{M}$  |
| $\mathrm{HO}_2 + \mathrm{HO}_2$          | 10                                 | $H_2O_2 + O_2$                 |
| $\mathrm{HO}_2 + \mathrm{H}_2$           | 11                                 | $\mathrm{H_2O_2} + \mathrm{H}$ |
| $\mathrm{H_2O_2} + \mathrm{M}$           | 12                                 | $2\mathrm{OH}+\mathrm{M}$      |

# Low-temperature ignition

# Initial skeletal mechanism $H + O_2 \stackrel{1}{\rightleftharpoons}$ OH + O $H_2 + O \rightleftharpoons^2 OH + H$ $H_2 + OH \rightleftharpoons H_2O + H$ $H + O_2 + M \xrightarrow{4} HO_2 + M$ $HO_2 + H \leftarrow H_2 + O_2$ time (s) $HO_2 + HO_2 \xrightarrow{10} H_2O_2 + O_2$ $HO_2 + H_2 \xrightarrow{11} H_2O_2 + H$ $H_2O_2 + M \xrightarrow{12}$ 2OH + M

Validation



The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

#### Initial skeletal mechanism

| $\mathrm{H} + \mathrm{O}_2$              | $\stackrel{1}{\rightarrow}$ | OH + O                                    |
|------------------------------------------|-----------------------------|-------------------------------------------|
| $\mathrm{H}_{2} + \mathrm{O}$            | $\xrightarrow{2}$           | OH + H                                    |
| $\mathrm{H}_{2} + \mathrm{OH}$           | $\xrightarrow{3}$           | $\rm H_2O + H$                            |
| $\mathrm{H} + \mathrm{O}_2 + \mathrm{M}$ | $\xrightarrow{4}$           | $\mathrm{HO}_{2} + \mathrm{M}$            |
| $\mathrm{H}_2 + \mathrm{O}_2$            | $\xrightarrow{5}$           | $\mathrm{HO}_{2} + \mathrm{H}$            |
| $\mathrm{HO}_2 + \mathrm{HO}_2$          | $\xrightarrow{6}$           | $\mathrm{H_2O_2} + \mathrm{O_2}$          |
| $\mathrm{HO}_2 + \mathrm{H}_2$           | $\xrightarrow{7}$           | $\mathrm{H}_{2}\mathrm{O}_{2}+\mathrm{H}$ |
| $\mathrm{H_2O_2} + \mathrm{M}$           | $\xrightarrow{8}$           | $\rm 2OH + M$                             |
|                                          |                             |                                           |

#### Initial skeletal mechanism

| $\mathrm{H} + \mathrm{O}_2$              | $\stackrel{1}{\rightarrow}$ | OH + O                                |
|------------------------------------------|-----------------------------|---------------------------------------|
| $\mathrm{H}_{2} + \mathrm{O}$            | $\xrightarrow{2}$           | OH + H                                |
| $\mathrm{H}_{2} + \mathrm{OH}$           | $\xrightarrow{3}$           | $\mathrm{H}_{2}\mathrm{O}+\mathrm{H}$ |
| $\mathrm{H} + \mathrm{O}_2 + \mathrm{M}$ | $\xrightarrow{4}$           | $\mathrm{HO}_{2} + \mathrm{M}$        |
| $\mathrm{H}_2 + \mathrm{O}_2$            | $\xrightarrow{5}$           | $\mathrm{HO}_{2} + \mathrm{H}$        |
| $\mathrm{HO}_{2} + \mathrm{HO}_{2}$      | $\xrightarrow{6}$           | $\mathrm{H_2O_2} + \mathrm{O_2}$      |
| $\mathrm{HO}_2 + \mathrm{H}_2$           | $\xrightarrow{7}$           | $\mathrm{H_2O_2} + \mathrm{H}$        |
| $\mathrm{H_2O_2} + \mathrm{M}$           | $\xrightarrow{8}$           | $2\mathrm{OH}+\mathrm{M}$             |
|                                          |                             |                                       |

**Steady-state intermediates** H, O, OH

#### Initial skeletal mechanism

| $\mathrm{H} + \mathrm{O}_2$              | $\stackrel{1}{\rightarrow}$ | OH + O                                    |
|------------------------------------------|-----------------------------|-------------------------------------------|
| $\mathrm{H}_{2} + \mathrm{O}$            | $\xrightarrow{2}$           | $\mathrm{OH} + \mathrm{H}$                |
| $\mathrm{H}_{2} + \mathrm{OH}$           | $\xrightarrow{3}$           | $\mathrm{H}_{2}\mathrm{O}+\mathrm{H}$     |
| $\mathrm{H} + \mathrm{O}_2 + \mathrm{M}$ | $\xrightarrow{4}$           | $\mathrm{HO}_{2} + \mathrm{M}$            |
| $\mathrm{H}_2 + \mathrm{O}_2$            | $\xrightarrow{5}$           | $\mathrm{HO}_{2} + \mathrm{H}$            |
| $\mathrm{HO}_{2} + \mathrm{HO}_{2}$      | $\xrightarrow{6}$           | $\mathrm{H_2O_2} + \mathrm{O_2}$          |
| $\mathrm{HO}_2 + \mathrm{H}_2$           | $\xrightarrow{7}$           | $\mathrm{H}_{2}\mathrm{O}_{2}+\mathrm{H}$ |
| $\mathrm{H_2O_2} + \mathrm{M}$           | $\xrightarrow{8}$           | $\rm 2OH+M$                               |
|                                          |                             |                                           |

Steady-state intermediates H, O, OH

**3-step reduced mechanism**   $2H_2 + O_2 \xrightarrow{I^*} 2H_2O$   $H_2O_2 + H_2 \xrightarrow{II^*} 2H_2O$  $H_2 + 2O_2 \xrightarrow{III^*} 2HO_2$ 

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

#### Initial skeletal mechanism

| $\mathrm{H} + \mathrm{O}_2$              | $\xrightarrow{1}$ | OH + O                                |
|------------------------------------------|-------------------|---------------------------------------|
| $\mathrm{H}_{2} + \mathrm{O}$            | $\xrightarrow{2}$ | OH + H                                |
| $\mathrm{H}_{2} + \mathrm{OH}$           | $\xrightarrow{3}$ | $\mathrm{H}_{2}\mathrm{O}+\mathrm{H}$ |
| $\mathrm{H} + \mathrm{O}_2 + \mathrm{M}$ | $\xrightarrow{4}$ | $\mathrm{HO}_{2} + \mathrm{M}$        |
| $\mathrm{H}_2 + \mathrm{O}_2$            | $\xrightarrow{5}$ | $\mathrm{HO}_{2} + \mathrm{H}$        |
| $\mathrm{HO}_{2} + \mathrm{HO}_{2}$      | $\xrightarrow{6}$ | $\mathrm{H_2O_2} + \mathrm{O_2}$      |
| $\mathrm{HO}_2 + \mathrm{H}_2$           | $\xrightarrow{7}$ | $\mathrm{H_2O_2} + \mathrm{H}$        |
| $\mathrm{H_2O_2} + \mathrm{M}$           | $\xrightarrow{8}$ | $\rm 2OH+M$                           |
|                                          |                   |                                       |

**Steady-state intermediates** H, O, OH

**3-step reduced mechanism**   $2H_2 + O_2 \xrightarrow{I^*} 2H_2O$   $H_2O_2 + H_2 \xrightarrow{II^*} 2H_2O$  $H_2 + 2O_2 \xrightarrow{III^*} 2HO_2$ 

$$\omega_{I^*} = w_1 + w_6 + w_7$$
$$\omega_{II^*} = -w_6 - w_7 + w_8$$
$$\omega_{III^*} = \frac{w_4 + w_5 - 2w_6 - w_7}{2}$$

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

ω

#### Initial skeletal mechanism

| $\xrightarrow{1}$ | OH + O                                                                                                                                              |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| $\xrightarrow{2}$ | OH + H                                                                                                                                              |
| $\xrightarrow{3}$ | $\mathrm{H}_{2}\mathrm{O}+\mathrm{H}$                                                                                                               |
| $\xrightarrow{4}$ | $\mathrm{HO}_{2} + \mathrm{M}$                                                                                                                      |
| $\xrightarrow{5}$ | $\mathrm{HO}_{2} + \mathrm{H}$                                                                                                                      |
| $\xrightarrow{6}$ | $\mathrm{H_2O_2} + \mathrm{O_2}$                                                                                                                    |
| $\xrightarrow{7}$ | $\mathrm{H_2O_2} + \mathrm{H}$                                                                                                                      |
| $\xrightarrow{8}$ | $\rm 2OH+M$                                                                                                                                         |
|                   | $\begin{array}{c}1\\ \hline\\2\\ \hline\\3\\ \hline\\4\\ \hline\\5\\ \hline\\6\\ \hline\\7\\ \hline\\8\\ \hline\\8\\ \hline\\8\\ \hline\end{array}$ |

#### Steady-state expression for H

$$C_{\rm H} = \frac{k_5 C_{\rm H_2} C_{\rm O_2} + k_7 C_{\rm H_2} C_{\rm HO_2} + 2k_8 C_{\rm H_2O_2} C_{\rm M}}{(k_4 C_{\rm M} - k_1) C_{\rm O_2}}$$

**Steady-state intermediates** H, O, OH

**3-step reduced mechanism**   $2H_2 + O_2 \xrightarrow{I^*} 2H_2O$   $H_2O_2 + H_2 \xrightarrow{II^*} 2H_2O$  $H_2 + 2O_2 \xrightarrow{III^*} 2HO_2$ 

$$\begin{aligned}
\omega_{I^*} &= w_1 + w_6 + w_7 \\
\omega_{II^*} &= -w_6 - w_7 + w_8 \\
\omega_{III^*} &= \frac{w_4 + w_5 - 2w_6 - w_7}{2}
\end{aligned}$$

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

#### 3-step reduced mechanism

$$\begin{array}{rcl} 2H_2 + O_2 & \stackrel{I^*}{\rightarrow} & 2H_2O \\ H_2O_2 + H_2 & \stackrel{II^*}{\rightleftharpoons} & 2H_2O \\ H_2 + 2O_2 & \stackrel{III^*}{\rightleftharpoons} & 2HO_2 \end{array}$$

$$\begin{split} \omega_{I^*} &= w_1 + w_6 + w_7 \\ \omega_{II^*} &= -w_6 - w_7 + w_8 \\ \omega_{III^*} &= \frac{w_4 + w_5 - 2w_6 - w_7}{2} \end{split}$$

$$C_{\rm H} = \frac{k_5 C_{\rm H_2} C_{\rm O_2} + k_7 C_{\rm H_2} C_{\rm HO_2} + 2k_8 C_{\rm H_2O_2} C_{\rm M}}{(k_4 C_{\rm M} - k_1) C_{\rm O_2}}$$

Introduction



3-step reduced mechanism

$$\begin{array}{rcl} 2H_2+O_2 & \stackrel{I^*}{\rightarrow} & 2H_2O \\ H_2O_2+H_2 & \stackrel{II^*}{\rightleftharpoons} & 2H_2O \\ H_2+2O_2 & \stackrel{III^*}{\rightleftharpoons} & 2HO_2 \end{array}$$

$$\omega_{I^*} = w_1 + w_6 + w_7$$
  
 $\omega_{II^*} = -w_6 - w_7 + w_8$ 

$$* = \frac{w_4 + w_5 - 2w_6 - w_7}{2}$$

$$C_{\rm H} = \frac{k_5 C_{\rm H_2} C_{\rm O_2} + k_7 C_{\rm H_2} C_{\rm HO_2} + 2k_8 C_{\rm H_2O_2} C_{\rm M}}{(k_4 C_{\rm M} - k_1) C_{\rm O_2}}$$

 $\omega_{\mathrm{III}}$ 



#### 3-step reduced mechanism

$$\begin{array}{rcl} 2H_2+O_2 & \stackrel{I^*}{\rightarrow} & 2H_2O \\ H_2O_2+H_2 & \stackrel{II^*}{\rightleftharpoons} & 2H_2O \\ H_2+2O_2 & \stackrel{III^*}{\rightleftharpoons} & 2HO_2 \end{array}$$

$$\omega_{I^*} = w_1 + w_6 + w_7$$
  
 $\omega_{II^*} = -w_6 - w_7 + w_8$ 

$$u_{11^*} = \frac{w_4 + w_5 - 2w_6 - w_7}{2}$$

$$C_{\rm H} = \frac{k_5 C_{\rm H_2} C_{\rm O_2} + k_7 C_{\rm H_2} C_{\rm HO_2} + 2k_8 C_{\rm H_2O_2} C_{\rm M}}{(k_4 C_{\rm M} - k_1) C_{\rm O_2}}$$

ω



 $\ensuremath{\text{HO}}_2$  reaches steady state after a short initial period

#### 3-step reduced mechanism

$$\begin{array}{rcl} 2H_2+O_2 & \stackrel{I^*}{\rightarrow} & 2H_2O \\ H_2O_2+H_2 & \stackrel{II^*}{\rightleftharpoons} & 2H_2O \\ H_2+2O_2 & \stackrel{III^*}{\rightleftharpoons} & 2HO_2 \end{array}$$

$$\omega_{I^*} = w_1 + w_6 + w_7$$
  
 $\omega_{II^*} = -w_6 - w_7 + w_8$ 

$$_{I^*} = \frac{w_4 + w_5 - 2w_6 - w_7}{2}$$

$$C_{\rm H} = \frac{k_5 C_{\rm H_2} C_{\rm O_2} + k_7 C_{\rm H_2} C_{\rm HO_2} + 2k_8 C_{\rm H_2O_2} C_{\rm M}}{(k_4 C_{\rm M} - k_1) C_{\rm O_2}}$$

 $\omega_{\mathrm{II}}$ 

$$\dot{C}_{\rm HO_2} = w_4 + w_5 - 2w_6 - w_7 = 0$$

$$\dot{C}_{\rm HO_2} = w_4 + w_5 - 2w_6 - w_7 = 0$$



Global rates  

$$\omega_{I} = \frac{w_5 + w_7 + (1 + \alpha)w_8}{1 - \alpha}$$
  
 $\omega_{II} = \frac{(1 - \frac{1}{2}\alpha)(w_5 + w_7) + \alpha w_8}{1 - \alpha}$ 

$$\alpha = \frac{2k_1}{k_4 C_{\mathrm{M}_4}}, \ w_5 = k_5 C_{\mathrm{H}_2} C_{\mathrm{O}_2}, \ w_6 = k_6 C_{\mathrm{HO}_2}^2, \ w_7 = k_7 C_{\mathrm{HO}_2} C_{\mathrm{H}_2}, \ w_8 = k_8 C_{\mathrm{M}} C_{\mathrm{H}_2\mathrm{O}_2}$$

$$\dot{C}_{\rm HO_2} = w_4 + w_5 - 2w_6 - w_7 = 0$$

| 2-step reduced mechanism       |                                          |                                  |  |
|--------------------------------|------------------------------------------|----------------------------------|--|
| $2\mathrm{H}_2 + \mathrm{O}_2$ | $\stackrel{\mathrm{I}}{\longrightarrow}$ | $2\mathrm{H}_2\mathrm{O}$        |  |
| $2\mathrm{H}_{2}\mathrm{O}$    | $\stackrel{\rm II}{\longrightarrow}$     | $\mathrm{H_2O_2} + \mathrm{H_2}$ |  |
|                                |                                          |                                  |  |

# Global rates $\omega_{I} = \frac{w_5 + w_7 + (1 + \alpha)w_8}{1 - \alpha}$ $\omega_{II} = \frac{(1 - \frac{1}{2}\alpha)(w_5 + w_7) + \alpha w_8}{1 - \alpha}$

$$\alpha = \frac{2k_1}{k_4 C_{\mathrm{M}_4}}, \ w_5 = k_5 C_{\mathrm{H}_2} C_{\mathrm{O}_2}, \ w_6 = k_6 C_{\mathrm{HO}_2}^2, \ w_7 = k_7 C_{\mathrm{HO}_2} C_{\mathrm{H}_2}, \ w_8 = k_8 C_{\mathrm{M}} C_{\mathrm{H}_2\mathrm{O}_2}$$

# $\begin{array}{rcl} \hline \textbf{Conservation equations} \\ \frac{\mathrm{d}C_{\mathrm{H_2O_2}}}{\mathrm{d}t} &= \omega_{\mathrm{II}} \\ \rho c_p \frac{\mathrm{d}T}{\mathrm{d}t} &= -2h_{\mathrm{H_2O}}(\omega_{\mathrm{I}} - \omega_{\mathrm{II}}) - h_{\mathrm{H_2O_2}}\omega_{\mathrm{II}} \end{array}$

Init. Conditions  $C_{\text{H}_2\text{O}_2}(0) = T(0) - T_o = 0$ 

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

$$\alpha = \frac{2k_1}{k_4 C_{M_4}}, \ w_5 = k_5 C_{H_2} C_{O_2}, \ w_6 = k_6 C_{HO_2}^2, \ w_7 = k_7 C_{HO_2} C_{H_2}, \ w_8 = k_8 C_M C_{H_2O_2}$$

# 

Init. Conditions  $C_{\text{H}_2\text{O}_2}(0) = T(0) - T_o = 0$ 

20 / 47

-7

Using the approximations  $w_5 = 0$  and  $(w_8 - \frac{1}{2}w_7)\alpha = 0$  yields

#### **Reduced global rates**

$$\begin{split} \omega_{\rm I} - \omega_{\rm II} &= -\frac{1+\alpha}{1-\alpha} k_8 C_{\rm M_8} C_{\rm H_2O_2} \\ \omega_{\rm II} &= -\frac{k_7 k_8^{1/2}}{k_6^{1/2}} \frac{C_{\rm H_2} C_{\rm M_8}}{(1-\alpha)^{3/2}} \left[ \left(1-\frac{\alpha}{2}\right) \frac{k_5 C_{\rm H_2} C_{\rm O_2}}{k_8 C_{\rm M_8}^2} + \frac{C_{\rm H_2O_2}}{C_{\rm M_8}} \right]^{1/2} \end{split}$$

Using the approximations  $w_5 = 0$  and  $(w_8 - \frac{1}{2}w_7)\alpha = 0$  yields

#### **Reduced global rates**

$$\begin{split} \omega_{\mathrm{I}} &- \omega_{\mathrm{II}} &= -\frac{1+\alpha}{1-\alpha} k_8 C_{\mathrm{M}_8} C_{\mathrm{H}_2 \mathrm{O}_2} \\ \omega_{\mathrm{II}} &= -\frac{k_7 k_8^{1/2}}{k_6^{1/2}} \frac{C_{\mathrm{H}_2} C_{\mathrm{M}_8}}{(1-\alpha)^{3/2}} \left[ \left(1-\frac{\alpha}{2}\right) \frac{k_5 C_{\mathrm{H}_2} C_{\mathrm{O}_2}}{k_8 C_{\mathrm{M}_8}^2} + \frac{C_{\mathrm{H}_2 \mathrm{O}_2}}{C_{\mathrm{M}_8}} \right]^{1/2} \end{split}$$

$$k_8 \propto e^{-rac{E_8}{R_o T}}, \quad rac{k_7 k_8^{1/2}}{k_6^{1/2}} \propto e^{-rac{E_7 + rac{1}{2}E_8 - rac{1}{2}E_6}{R_o T}}$$

with 
$$\beta = \frac{E_8}{R_o T_o} \simeq \frac{E_7 + \frac{1}{2}E_8 - \frac{1}{2}E_6}{R_o T_o} \simeq 30$$
 for  $T_o = 800$  K

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications



# **Dimensionless Problem**

#### **Dimensionless variables**

$$\begin{split} \varphi &= \left[ (1-\alpha)^{1/2} (1+\alpha) \beta q \right]^{2/3} \left( \frac{k_7}{(k_6 k_8)^{1/2}} \right)^{-2/3} \left( \frac{C_{\text{H}_2}}{C_{\text{M}_8}} \right)^{-2/3} \frac{C_{\text{H}_2\text{O}_2}}{C_{\text{M}_8}} \\ \tau &= \frac{(1+\alpha)^{1/3}}{(1-\alpha)^{4/3}} (\beta q)^{1/3} k_8 C_{\text{M}_8} \left( \frac{k_7}{(k_6 k_8)^{1/2}} \right)^{2/3} \left( \frac{C_{\text{H}_2}}{C_{\text{M}_8}} \right)^{2/3} t \\ \theta &= \beta \frac{T-T_o}{T_o}, \qquad q = \frac{-2h_{\text{H}_2\text{O}} C_{\text{M}_8}}{\rho c_p T_o} \end{split}$$

Introduction

# **Dimensionless Problem**

#### **Dimensionless variables**

$$\begin{split} \varphi &= \left[ (1-\alpha)^{1/2} (1+\alpha) \beta q \right]^{2/3} \left( \frac{k_7}{(k_6 k_8)^{1/2}} \right)^{-2/3} \left( \frac{C_{\text{H}_2}}{C_{\text{M}_8}} \right)^{-2/3} \frac{C_{\text{H}_2 \text{O}_2}}{C_{\text{M}_8}} \\ \tau &= \frac{(1+\alpha)^{1/3}}{(1-\alpha)^{4/3}} (\beta q)^{1/3} k_8 C_{\text{M}_8} \left( \frac{k_7}{(k_6 k_8)^{1/2}} \right)^{2/3} \left( \frac{C_{\text{H}_2}}{C_{\text{M}_8}} \right)^{2/3} t \\ \theta &= \beta \frac{T-T_o}{T_o}, \qquad q = \frac{-2h_{\text{H}_2 \text{O}} C_{\text{M}_8}}{\rho c_\rho T_o} \end{split}$$

#### **Conservation equations**

$$\begin{array}{lll} \frac{\mathrm{d}\varphi}{\mathrm{d}\tau} &=& (a+\varphi)^{1/2}e^{\theta} \\ \frac{\mathrm{d}\theta}{\mathrm{d}\tau} &=& \varphi e^{\theta} + \Lambda (a+\varphi)^{1/2}e^{\theta} \end{array} \end{array}$$

# Init. Conditions $\varphi(0) = \theta = 0$

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\tau} = (a+\varphi)^{1/2} e^{\theta}; \ \varphi(0) = 0$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}\tau} = \varphi e^{\theta} + \Lambda(a+\varphi)^{1/2} e^{\theta}; \ \theta(0) = 0$$

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\tau} = (a+\varphi)^{1/2} e^{\theta}; \ \varphi(0) = 0$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}\tau} = \varphi e^{\theta} + \Lambda(a+\varphi)^{1/2} e^{\theta}; \ \theta(0) = 0$$

$$\mathbf{a} = \left(1 - \frac{\alpha}{2}\right)^{1/3} (1 - \alpha)^{1/3} (1 + \alpha)^{2/3} (\beta q)^{2/3} \frac{k_5 k_6^{1/3}}{(k_7 k_8)^{2/3}} \left(\frac{C_{\rm H_2}}{C_{\rm M_8}}\right)^{1/3} \left(\frac{C_{\rm O_2}}{C_{\rm M_8}}\right) \sim 10^{-5}$$

Initiation counts for  $\tau\sim a^{1/2}$  when  $\varphi\sim\theta\sim a$  but it is negligible at later times

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\tau} = (\mathbf{a} + \varphi)^{1/2} \mathbf{e}^{\theta}; \ \varphi(\mathbf{0}) = \mathbf{0}$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}\tau} = \varphi \mathbf{e}^{\theta} + \Lambda(\mathbf{a} + \varphi)^{1/2} \mathbf{e}^{\theta}; \ \theta(\mathbf{0}) = \mathbf{0}$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}\varphi} = \Lambda + \varphi^{1/2}$$
$$\theta = (2/3)\varphi^{3/2} + \Lambda\varphi$$

$$\mathbf{a} = \left(1 - \frac{\alpha}{2}\right)^{1/3} (1 - \alpha)^{1/3} (1 + \alpha)^{2/3} (\beta \mathbf{q})^{2/3} \frac{k_5 k_6^{1/3}}{(k_7 k_8)^{2/3}} \left(\frac{C_{\rm H_2}}{C_{\rm M_8}}\right)^{1/3} \left(\frac{C_{\rm O_2}}{C_{\rm M_8}}\right) \sim 10^{-5}$$

Initiation counts for  $\tau\sim a^{1/2}$  when  $\varphi\sim\theta\sim a$  but it is negligible at later times

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\tau} = (\mathbf{a} + \varphi)^{1/2} \mathbf{e}^{\theta}; \ \varphi(\mathbf{0}) = \mathbf{0}$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}\tau} = \varphi \mathbf{e}^{\theta} + \Lambda(\mathbf{a} + \varphi)^{1/2} \mathbf{e}^{\theta}; \ \theta(\mathbf{0}) = \mathbf{0}$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}\varphi} = \Lambda + \varphi^{1/2}$$
$$\theta = (2/3)\varphi^{3/2} + \Lambda\varphi$$

$$\mathbf{a} = \left(1 - \frac{\alpha}{2}\right)^{1/3} (1 - \alpha)^{1/3} (1 + \alpha)^{2/3} (\beta \mathbf{q})^{2/3} \frac{k_5 k_6^{1/3}}{(k_7 k_8)^{2/3}} \left(\frac{C_{\rm H_2}}{C_{\rm M_8}}\right)^{1/3} \left(\frac{C_{\rm O_2}}{C_{\rm M_8}}\right) \sim 10^{-5}$$

Initiation counts for  $\tau \sim a^{1/2}$  when  $\varphi \sim \theta \sim a$  but it is negligible at later times

$$au_i = \int_0^\infty rac{\mathrm{d}\varphi}{\varphi^{1/2} \exp\left(rac{2}{3}\varphi^{3/2} + \Lambda\varphi
ight)}$$

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\tau} = (\mathbf{a} + \varphi)^{1/2} \mathbf{e}^{\theta}; \ \varphi(\mathbf{0}) = \mathbf{0}$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}\tau} = \varphi \mathbf{e}^{\theta} + \Lambda(\mathbf{a} + \varphi)^{1/2} \mathbf{e}^{\theta}; \ \theta(\mathbf{0}) = \mathbf{0}$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}\varphi} = \Lambda + \varphi^{1/2}$$
$$\theta = (2/3)\varphi^{3/2} + \Lambda\varphi$$

$$\mathbf{a} = \left(1 - \frac{\alpha}{2}\right)^{1/3} (1 - \alpha)^{1/3} (1 + \alpha)^{2/3} (\beta \mathbf{q})^{2/3} \frac{k_5 k_6^{1/3}}{(k_7 k_8)^{2/3}} \left(\frac{C_{\rm H_2}}{C_{\rm M_8}}\right)^{1/3} \left(\frac{C_{\rm O_2}}{C_{\rm M_8}}\right) \sim 10^{-5}$$

Initiation counts for  $\tau\sim a^{1/2}$  when  $\varphi\sim\theta\sim a$  but it is negligible at later times

$$au_i = \int_0^\infty rac{\mathrm{d}arphi}{arphi^{1/2} \exp\left(rac{2}{3}arphi^{3/2} + \Lambda arphi
ight)}$$

$$\Lambda = \left[\frac{k_7/(k_6k_8)^{1/2}}{(1-\alpha)^{1/2}(1+\alpha)}\right]^{2/3} (\beta q)^{1/3} \left(\frac{C_{\rm H_2}}{C_{\rm M_8}}\right)^{2/3} \frac{h_{\rm H_2O_2}}{2h_{\rm H_2O}} \simeq 0.1$$

$$\frac{\mathrm{d}\varphi}{\mathrm{d}\tau} = (\mathbf{a} + \varphi)^{1/2} \mathbf{e}^{\theta}; \ \varphi(\mathbf{0}) = \mathbf{0}$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}\tau} = \varphi \mathbf{e}^{\theta} + \Lambda(\mathbf{a} + \varphi)^{1/2} \mathbf{e}^{\theta}; \ \theta(\mathbf{0}) = \mathbf{0}$$

$$\frac{\mathrm{d}\theta}{\mathrm{d}\varphi} = \Lambda + \varphi^{1/2}$$
$$\theta = (2/3)\varphi^{3/2} + \Lambda\varphi$$

$$\mathsf{a} = \left(1 - \frac{\alpha}{2}\right)^{1/3} (1 - \alpha)^{1/3} (1 + \alpha)^{2/3} (\beta q)^{2/3} \frac{k_5 k_6^{1/3}}{(k_7 k_8)^{2/3}} \left(\frac{C_{\mathrm{H}_2}}{C_{\mathrm{M}_8}}\right)^{1/3} \left(\frac{C_{\mathrm{O}_2}}{C_{\mathrm{M}_8}}\right) \sim 10^{-5}$$

Initiation counts for  $\tau\sim a^{1/2}$  when  $\varphi\sim\theta\sim a$  but it is negligible at later times

$$\tau_i = \int_0^\infty \frac{\mathrm{d}\varphi}{\varphi^{1/2} \exp\left(\frac{2}{3}\varphi^{3/2} + \Lambda\varphi\right)} = (2/3)^{2/3} \Gamma(1/3) \simeq 2.0444$$

$$\Lambda = \left[\frac{k_7/(k_6k_8)^{1/2}}{(1-\alpha)^{1/2}(1+\alpha)}\right]^{2/3} (\beta q)^{1/3} \left(\frac{C_{\rm H_2}}{C_{\rm M_8}}\right)^{2/3} \frac{h_{\rm H_2O_2}}{2h_{\rm H_2O}} \simeq 0.1$$

$$t_i = 2.0444 \frac{(1-\alpha)^{4/3}}{(1+\alpha)^{1/3}} (\beta q)^{-1/3} (k_8 C_{M_8})^{-1} \left(\frac{k_7}{(k_6 k_8)^{1/2}}\right)^{-2/3} \left(\frac{C_{H_2}}{C_{M_8}}\right)^{-2/3}$$



ed-combustion problems relevant for safety applications

# Very lean flames and flammability limit



The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

٨

# Skeletal mechanism for very lean flames

#### Skeletal mechanism 12 elementary steps, 8 species

| $\mathrm{H} + \mathrm{O}_2$               | $\stackrel{1}{\rightleftharpoons}$ | OH + O                                      |
|-------------------------------------------|------------------------------------|---------------------------------------------|
| $\mathrm{H}_{2} + \mathrm{O}$             | $\stackrel{2}{\rightleftharpoons}$ | $\mathrm{OH} + \mathrm{H}$                  |
| $\mathrm{H}_{2} + \mathrm{OH}$            | <sup>3</sup> →                     | $\mathrm{H}_{2}\mathrm{O}+\mathrm{H}$       |
| $\mathrm{H} + \mathrm{O}_2 + \mathrm{M}$  | 4                                  | $\mathrm{HO}_{2} + \mathrm{M}$              |
| $\mathrm{HO}_{2} + \mathrm{H}$            | 5                                  | 2OH                                         |
| $\mathrm{HO}_{2} + \mathrm{H}$            | <del>6</del><br>→                  | $\mathrm{H}_{2} + \mathrm{O}_{2}$           |
| $\mathrm{HO}_{2} + \mathrm{OH}$           | 7                                  | $\mathrm{H}_{2}\mathrm{O}+\mathrm{O}_{2}$   |
| H + OH + M                                | ₩                                  | $\rm H_2O + M$                              |
| $\rm H + \rm H + \rm M$                   | <sup>9</sup><br>→                  | $\mathrm{H}_{2} + \mathrm{M}$               |
| $\mathrm{HO}_2 + \mathrm{HO}_2$           | 10                                 | $H_2O_2 + O_2$                              |
| $\mathrm{HO}_2 + \mathrm{H}_2$            | 11                                 | $\mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{H}$ |
| $\mathrm{H}_{2}\mathrm{O}_{2}+\mathrm{M}$ | 12                                 | $2\mathrm{OH} + \mathrm{M}$                 |

# Skeletal mechanism for very lean flames

#### Skeletal mechanism 12 elementary steps, 8 species

$$\begin{array}{rcl} H+O_2 & \stackrel{1}{\rightleftharpoons} & OH+O \\ H_2+O & \stackrel{2}{\rightleftharpoons} & OH+H \\ H_2+OH & \stackrel{3}{\rightleftharpoons} & H_2O+H \\ H+O_2+M & \stackrel{4}{\rightharpoonup} & HO_2+M \\ HO_2+H & \stackrel{5}{\frown} & 2OH \\ HO_2+H & \stackrel{6}{\rightleftharpoons} & H_2+O_2 \\ HO_2+OH & \stackrel{7}{\rightharpoonup} & H_2O+O_2 \end{array}$$

#### Simplification

Reactions 1-7 describe accurately lean deflagrations at atmospheric and moderately elevated pressures



1. 
$$H+O_2 \rightleftharpoons OH+O$$
  
2.  $H_2+O \rightleftharpoons OH+H$   
3.  $H_2+OH \rightleftharpoons H_2O+H$   
4f.  $H+O_2+M \rightarrow HO_2+M$   
5f.  $HO_2+H \rightarrow OH+OH$   
6f.  $HO_2+H \rightarrow H_2+O_2$   
7f.  $HO_2+OH \rightarrow H_2O+O_2$ 

$$\begin{split} & C_{\rm H_2} = -\omega_2 - \omega_3 + \omega_{6f} \\ & \dot{C}_{\rm O_2} = -\omega_1 - \omega_{4f} + \omega_{6f} + \omega_{7f} \\ & \dot{C}_{\rm H_2O} = \omega_3 + \omega_{7f} \\ & \dot{C}_{\rm O} = \omega_1 - \omega_2 \\ & \dot{C}_{\rm OH} = \omega_1 + \omega_2 - \omega_3 + 2\omega_{5f} - \omega_{7f} \\ & \dot{C}_{\rm H} = -\omega_1 + \omega_2 + \omega_3 - \omega_{4f} - \omega_{5f} - \omega_{6f} \\ & \dot{C}_{\rm HO_2} = \omega_{4f} - \omega_{5f} - \omega_{6f} - \omega_{7f} \end{split}$$

$$\begin{split} \dot{C}_{H_2} + \left\{ \dot{C}_{O} + \frac{1}{2}\dot{C}_{OH} + \frac{3}{2}\dot{C}_{H} - \frac{1}{2}\dot{C}_{HO_2} \right\} &= -2\omega_{4f} \\ \dot{C}_{O_2} + \left\{ \dot{C}_{O} + \frac{1}{2}\dot{C}_{OH} + \frac{1}{2}\dot{C}_{H} + \frac{1}{2}\dot{C}_{HO_2} \right\} &= -\omega_{4f} \\ \dot{C}_{H_2O} - \left\{ \dot{C}_{O} + \dot{C}_{H} - \dot{C}_{HO_2} \right\} &= 2\omega_{4f} \end{split}$$

1. 
$$H+O_2 \rightleftharpoons OH+O$$
  
2.  $H_2+O \rightleftharpoons OH+H$   
3.  $H_2+OH \rightleftharpoons H_2O+H$   
4f.  $H+O_2+M \rightarrow HO_2+M$   
6f.  $HO_2+H \rightarrow H_2+O_2$   
7f.  $HO_2+OH \rightarrow H_2O+O_2$   
 $C_{H_2} = -\omega_2 - \omega_3 + \omega_{6f}$   
 $\dot{C}_{O_2} = -\omega_1 - \omega_{4f} + \omega_{6f} + \omega_{7f}$   
 $\dot{C}_{O_2} = -\omega_1 - \omega_2 = 0$   
 $\dot{C}_{OH} = \omega_1 - \omega_2 = 0$   
 $\dot{C}_{OH} = \omega_1 + \omega_2 - \omega_3 + 2\omega_{5f} - \omega_{7f} = 0$   
 $\dot{C}_{H} = -\omega_1 + \omega_2 + \omega_3 - \omega_{4f} - \omega_{5f} - \omega_{6f} = \omega_{10}$ 

$$\dot{\dot{C}}_{H_2} + \left\{ \dot{\dot{C}}_{O} + \frac{1}{2} \dot{\dot{C}}_{OH} + \frac{3}{2} \dot{\dot{C}}_{H} - \frac{1}{2} \dot{\dot{C}}_{HO_2} \right\} = -2\omega_{4f}$$

$$\dot{\dot{C}}_{O_2} + \left\{ \dot{\dot{C}}_{O} + \frac{1}{2} \dot{\dot{C}}_{OH} + \frac{1}{2} \dot{\dot{C}}_{H} + \frac{1}{2} \dot{\dot{C}}_{HO_2} \right\} = -\omega_{4f}$$

$$\dot{\dot{C}}_{H_2O} - \left\{ \dot{\dot{C}}_{O} + \dot{\dot{C}}_{H} - \dot{\dot{C}}_{HO_2} \right\} = 2\omega_{4f}$$

• One-step reaction among the main chemical species  $2H_2 + O_2 \rightarrow 2H_2O \quad (\omega_{4f} = k_{4f}C_MC_{O_2}C_H)$ 

1. 
$$H+O_2 \Rightarrow OH+O$$
  
2.  $H_2+O \Rightarrow OH+H$   
3.  $H_2+OH \Rightarrow H_2O+H$   
4f.  $H+O_2+M \rightarrow HO_2+M$   
5f.  $HO_2+H \rightarrow OH+OH$   
6f.  $HO_2+H \rightarrow H_2+O_2$   
7f.  $HO_2+OH \rightarrow H_2O+O_2$ 

$$\begin{aligned} C_{H_2} &= -\omega_2 - \omega_3 + \omega_{6f} \\ \dot{C}_{O_2} &= -\omega_1 - \omega_{4f} + \omega_{6f} + \omega_{7f} \\ \dot{C}_{H_{2O}} &= \omega_3 + \omega_{7f} \\ \dot{C}_O &= \omega_1 - \omega_2 = \mathbf{0} \\ \dot{C}_{OH} &= \omega_1 + \omega_2 - \omega_3 + 2\omega_{5f} - \omega_{7f} = \mathbf{0} \\ \dot{C}_H &= -\omega_1 + \omega_2 + \omega_3 - \omega_{4f} - \omega_{5f} - \omega_{6f} = \mathbf{0} \\ \dot{C}_{HO_2} &= \omega_{4f} - \omega_{5f} - \omega_{6f} - \omega_{7f} = \mathbf{0} \end{aligned}$$

$$\dot{C}_{H_{2}} + \left\{ \dot{C}_{O} + \frac{1}{2}\dot{C}_{OH} + \frac{3}{2}\dot{C}_{H} - \frac{1}{2}\dot{C}_{HO_{2}} \right\} = -2\omega_{4f}$$
$$\dot{C}_{O_{2}} + \left\{ \dot{C}_{O} + \frac{1}{2}\dot{C}_{OH} + \frac{1}{2}\dot{C}_{H} + \frac{1}{2}\dot{C}_{HO_{2}} \right\} = -\omega_{4f}$$
$$\dot{C}_{H_{2}O} - \left\{ \dot{C}_{O} + \dot{C}_{H} - \dot{C}_{HO_{2}} \right\} = 2\omega_{4f}$$

• One-step reaction among the main chemical species  $2H_2 + O_2 \rightarrow 2H_2O \quad (\omega_{4f} = k_{4f}C_MC_{O_2}C_H)$ 

$$\begin{split} \dot{C}_{O} &= \omega_{1} - \omega_{2} = 0 \\ \dot{C}_{OH} &= \omega_{1} + \omega_{2} - \omega_{3} + 2\omega_{5f} - \omega_{7f} = 0 \\ \dot{C}_{H} &= -\omega_{1} + \omega_{2} + \omega_{3} - \omega_{4f} - \omega_{5f} - \omega_{6f} = 0 \\ \dot{C}_{HO_{2}} &= \omega_{4f} - \omega_{5f} - \omega_{6f} - \omega_{7f} = 0 \end{split}$$
$$\begin{split} \dot{C}_{O} &= \omega_{1} - \omega_{2} = 0 = k_{1f} C_{O_{2}} C_{H} - k_{1b} C_{OH} C_{O} - k_{2f} C_{H_{2}} C_{O} + k_{2b} C_{OH} C_{H} \\ \dot{C}_{OH} &= \omega_{1} + \omega_{2} - \omega_{3} + 2\omega_{5f} - \omega_{7f} = 0 \\ \dot{C}_{H} &= -\omega_{1} + \omega_{2} + \omega_{3} - \omega_{4f} - \omega_{5f} - \omega_{6f} = 0 \\ \dot{C}_{HO_{2}} &= \omega_{4f} - \omega_{5f} - \omega_{6f} - \omega_{7f} = 0 \end{split}$$

• 
$$C_{\rm H} = \frac{1}{HG} \frac{k_{2f} k_{3f} C_{\rm H_2}^2}{k_{1b} k_{4f} C_{\rm M} C_{\rm O_2}} \left( \frac{k_{1f}}{\bar{\alpha} k_{4f} C_{\rm M}} - 1 \right)$$

• 
$$C_{\rm H} = \frac{1}{HG} \frac{k_{2f} k_{3f} C_{\rm H_2}^2}{k_{1b} k_{4f} C_{\rm M} C_{\rm O_2}} \left( \frac{k_{1f}}{\bar{\alpha} k_{4f} C_{\rm M}} - 1 \right)$$
  
•  $C_{\rm OH} = \frac{k_{2f} C_{\rm H_2}}{H k_{1b}} \left( \frac{k_{1f}}{\bar{\alpha} k_{4f} C_{\rm M}} - 1 \right)$ 

• 
$$C_{\rm H} = \frac{1}{HG} \frac{k_{2f} k_{3f} C_{{\rm H}_2}^2}{k_{1b} k_{4f} C_{\rm M} C_{{\rm O}_2}} \left( \frac{k_{1f}}{\bar{\alpha} k_{4f} C_{\rm M}} - 1 \right)$$
  
•  $C_{\rm OH} = \frac{k_{2f} C_{{\rm H}_2}}{H k_{1b}} \left( \frac{k_{1f}}{\bar{\alpha} k_{4f} C_{\rm M}} - 1 \right)$   
•  $C_{\rm O} = \frac{\bar{\alpha} k_{3f} C_{{\rm H}_2}}{G k_{1b}} \left( \frac{k_{1f}}{\bar{\alpha} k_{4f} C_{\rm M}} - 1 \right)$ 

• 
$$C_{\rm H} = \frac{1}{HG} \frac{k_{2f} k_{3f} C_{\rm H_2}^2}{k_{1b} k_{4f} C_{\rm M} C_{\rm O_2}} \left( \frac{k_{1f}}{\bar{\alpha} k_{4f} C_{\rm M}} - 1 \right)$$
  
•  $C_{\rm OH} = \frac{k_{2f} C_{\rm H_2}}{H k_{1b}} \left( \frac{k_{1f}}{\bar{\alpha} k_{4f} C_{\rm M}} - 1 \right)$   
•  $C_{\rm O} = \frac{\bar{\alpha} k_{3f} C_{\rm H_2}}{G k_{1b}} \left( \frac{k_{1f}}{\bar{\alpha} k_{4f} C_{\rm M}} - 1 \right)$   
•  $C_{\rm HO_2} = \frac{k_{3f}}{(f + G) k_{7f}} C_{\rm H_2}$ 

• 
$$C_{\rm H} = \frac{1}{HG} \frac{k_{2f} k_{3f} C_{{\rm H}_2}^2}{k_{1b} k_{4f} C_{\rm M} C_{{\rm O}_2}} \left( \frac{k_{1f}}{\bar{\alpha} k_{4f} C_{\rm M}} - 1 \right)$$
  
•  $C_{\rm OH} = \frac{k_{2f} C_{{\rm H}_2}}{H k_{1b}} \left( \frac{k_{1f}}{\bar{\alpha} k_{4f} C_{\rm M}} - 1 \right)$   
•  $C_{\rm O} = \frac{\bar{\alpha} k_{3f} C_{{\rm H}_2}}{G k_{1b}} \left( \frac{k_{1f}}{\bar{\alpha} k_{4f} C_{\rm M}} - 1 \right)$   
•  $C_{\rm HO_2} = \frac{k_{3f}}{(f+G)k_{7f}} C_{{\rm H}_2}$   
 $f = \frac{k_{5f} + k_{6f}}{k_{7f}} \frac{k_{3f}}{k_{4f} C_{\rm M}} \frac{C_{{\rm H}_2}}{C_{{\rm O}_2}} \qquad H = \frac{1}{2} + \frac{1}{2} \left[ 1 + 4\gamma_{2b} f \frac{1}{\bar{\alpha}} \left( \frac{k_{1f}}{\alpha k_{4f} C_{\rm M}} - 1 \right) \right]^{1/2}$   
 $G = \frac{1 + \gamma_{3b}}{2} + \frac{f}{2} \left\{ [1 + 2(3 + \gamma_{3b})/f + (1 + \gamma_{3b})^2/f^2]^{1/2} - 1 \right\}$   
 $\bar{\alpha} = \frac{k_{6f} f/(k_{5f} + k_{6f}) + G}{f+G} \qquad \gamma_{3b} = \frac{k_{3b} C_{{\rm H}_2{\rm O}}}{k_{4f} C_{\rm M} C_{{\rm O}_2}} \qquad \gamma_{2b} = \frac{k_{7f}}{k_{5f} + k_{6f}} \frac{k_{2b} k_{2f}}{k_{1b} k_{3f}}$ 

• 
$$C_{\rm H} = \frac{1}{\mathcal{M}G} \frac{k_{2f}k_{3f}C_{\rm H_2}^2}{k_{1b}k_{4f}C_{\rm M}C_{\rm O_2}} \left(\frac{k_{1f}}{\bar{\alpha}k_{4f}C_{\rm M}} - 1\right)$$
  
•  $C_{\rm OH} = \frac{k_{2f}C_{\rm H_2}}{\mathcal{M}k_{1b}} \left(\frac{k_{1f}}{\bar{\alpha}k_{4f}C_{\rm M}} - 1\right)$   
•  $C_{\rm O} = \frac{\bar{\alpha}k_{3f}C_{\rm H_2}}{Gk_{1b}} \left(\frac{k_{1f}}{\bar{\alpha}k_{4f}C_{\rm M}} - 1\right)$   
•  $C_{\rm O} = \frac{\bar{\alpha}k_{3f}}{Gk_{1b}} \left(\frac{k_{1f}}{\bar{\alpha}k_{4f}C_{\rm M}} - 1\right)$   
•  $C_{\rm HO_2} = \frac{k_{3f}}{(f+G)k_{7f}}C_{\rm H_2}$   
 $f = \frac{k_{5f} + k_{6f}}{k_{7f}} \frac{k_{3f}}{k_{4f}C_{\rm M}} \frac{C_{\rm H_2}}{C_{\rm O_2}} \qquad H = \frac{1}{2} + \frac{1}{2} \left[1 + 4\gamma_{2b}f\frac{1}{\bar{\alpha}}\left(\frac{k_{1f}}{\alpha k_{4f}C_{\rm M}} - 1\right)\right]^{1/2} \simeq 1$   
 $G = \frac{1 + \gamma_{3b}}{2} + \frac{f}{2} \left\{ [1 + 2(3 + \gamma_{3b})/f + (1 + \gamma_{3b})^2/f^2]^{1/2} - 1 \right\}$   
 $\bar{\alpha} = \frac{k_{6f}f/(k_{5f} + k_{6f}) + G}{f+G} \qquad \gamma_{3b} = \frac{k_{3b}C_{\rm H_2O}}{k_{4f}C_{\rm M}C_{\rm O_2}} \qquad \gamma_{2b} = \frac{k_{7f}}{k_{5f} + k_{6f}} \frac{k_{2b}k_{2f}}{k_{1b}k_{3f}} \ll 1$ 

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications



• The concentration of the radicals H, O and OH vanish at a crossover temperature  $T_c$  defined by  $k_{1f} = \bar{\alpha}k_{4f}C_{\rm M}$ .

• 
$$\omega = \frac{1}{HG} \left( \frac{k_{1f}}{\bar{\alpha}k_{4f}C_{M}} - 1 \right) \frac{k_{2f}k_{3f}}{k_{1b}} C_{H_{2}}^{2}$$
 if  $k_{1f} > \bar{\alpha}k_{4f}C_{M}$   
•  $\omega = 0$  if  $k_{1f} < \bar{\alpha}k_{4f}C_{M}$ 

#### Introduction

### Kinetically-controlled lean flammability limit



- The crossover temperature at the lean flammability limit  $(T_c)_I$  is defined by  $k_{1f} = k_{4f} C_{\rm M}$  because  $\bar{\alpha} = 1$  for  $C_{\rm H_2} \ll 1$ .
- Flames can not exist for values of the equivalence ratio φ < φ<sub>l</sub>, such that T<sub>∞</sub> < (T<sub>c</sub>)<sub>l</sub>.

### Numerical computation of planar flames

• H<sub>2</sub>-air at p = 1 atm and  $T_u = 300$  K



Solid curve: 21-step mech. Dashed curve: 7-step mech.

$$\omega = \frac{1}{HG} \left( \frac{k_{1f}}{\bar{\alpha}k_{4f}C_{\rm M}} - 1 \right) \frac{k_{2f}k_{3f}}{k_{1b}} C_{\rm H_2}^2$$

### Numerical computation of planar flames

• H<sub>2</sub>-air at p = 1 atm and  $T_u = 300$  K



Solid curve: 21-step mech. Dashed curve: 7-step mech. Thick dot-dashed: 1-step Thin dot-dashed: 1-step (H = 1)

$$\omega = \frac{1}{HG} \left( \frac{k_{1f}}{\bar{\alpha}k_{4f}C_{\rm M}} - 1 \right) \frac{k_{2f}k_{3f}}{k_{1b}} C_{\rm H_2}^2$$

### Very lean flames and flammability limit



Introduction

### Lean hydrogen-air flame balls

Ronney's experiments on space shuttle (1997)



## Detailed numerical description of steady flame balls

$$\frac{1}{r^2} \frac{\mathrm{d}}{\mathrm{d}r} [\lambda r^2 \frac{\mathrm{d}T}{\mathrm{d}r}] = Q_R - \sum_i h_i^o \dot{m}_i \begin{cases} \frac{\mathrm{d}T}{\mathrm{d}r} = \frac{\mathrm{d}Y_i}{\mathrm{d}r} = 0 & \text{at } r = 0 \\ \frac{1}{r^2} \frac{\mathrm{d}}{\mathrm{d}r} [\rho D_i r^2 (\frac{\mathrm{d}Y_i}{\mathrm{d}r} + \frac{\alpha_i Y_i}{T} \frac{\mathrm{d}T}{\mathrm{d}r})] = \dot{m}_i \end{cases} \begin{cases} \frac{\mathrm{d}T}{\mathrm{d}r} = \frac{\mathrm{d}Y_i}{\mathrm{d}r} = 0 & \text{at } r = 0 \\ T(\infty) - T_\infty = Y_i(\infty) - Y_{i\infty} = 0 \end{cases}$$

- $\dot{m}_i$ : San Diego 21-step mechanism with 8 reacting species (O<sub>2</sub>, H<sub>2</sub>, H<sub>2</sub>O, O, H, OH, HO<sub>2</sub>, H<sub>2</sub>O<sub>2</sub>)
- Molecular diffusion: Fick's Law with Smooke's model:  $(\lambda/c_p)/(\lambda/c_p)_0 = (T/T_0)^{0.7}$ ,  $Le_i = constant$
- Thermal diffusion with  $\alpha_{\rm H} = -0.23$  and  $\alpha_{\rm H_2} = -0.29$
- Q<sub>R</sub>: Statistical Narrow Band model (SNB)

# Detailed numerical description of steady flame balls

#### Detailed chemistry + SNB radiation model



The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

### **One-step chemistry description**

For H<sub>2</sub>-air mixtures near the lean flammability limit (Fernández-Galisteo et al, C&F 156, 985-996, 2009) all chemical intermediates have very small concentrations and are in steady state, while the main species react according to

$$2H_2 + O_2 \rightarrow 2H_2O$$

with a rate given by

$$\begin{cases} \text{IF} k_{1f} > \alpha k_{4f} C_{\text{M}} : \omega = \frac{1}{GH} \left( \frac{k_{1f}}{\alpha k_{4f} C_{\text{M}}} - 1 \right) \frac{k_{2f} k_{3f}}{k_{1b}} (\rho Y_{\text{H}_2} / W_{\text{H}_2})^2 \\ \text{IF} k_{1f} \le \alpha k_{4f} C_{\text{M}} : \omega = 0 \end{cases}$$

The **crossover temperature**,  $T_c$ , is defined from  $k_{1f} = \alpha k_{4f} C_M$  in terms of the rates of the elementary reactions  $H + O_2 \rightleftharpoons OH + O$  and  $H + O_2 + M \stackrel{4f}{\rightarrow} HO_2 + M$  with a factor  $1/6 \le \alpha \le 1$  that depends on the local hydrogen content. Nondimensional activation energy  $\beta \sim 10$  for  $k_{1f}/(\alpha k_{4f} C_M)$ .

### **One-step chemistry description**



The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

### **Radiation models**



- Characteristic absorption length  $\alpha_a^{-1} \sim 10 {\rm cm}$  ( $\alpha_a \equiv$  absorption coefficient
- Optically thin approximation is accurate enough for description of flame-balls near extinction

$$Q_R = 4\sigma\alpha_a(T^4 - T_\infty^4)$$

### Steady flame balls

The identity  $\nabla Y_{\text{H}_2} + \alpha_{\text{H}_2} Y_{\text{H}_2} \nabla T/T = T^{-\alpha_{\text{H}_2}} \nabla (T^{\alpha_{\text{H}_2}} Y_{\text{H}_2})$ enables thermal diffusion to be incorporated in a single Fickian-like diffusion term as a function of  $Y = (T/T_{\infty})^{\alpha_{\text{H}_2}} Y_{\text{H}_2}$  with increased diffusivity  $D = (T/T_{\infty})^{-\alpha_{\text{H}_2}} D_{\text{H}_2}$ , so that

$$\frac{1}{r^2}\frac{\mathrm{d}}{\mathrm{d}r}\left(\lambda r^2\frac{\mathrm{d}T}{\mathrm{d}r}\right) = 4\kappa_{\mathrm{H_2O}}\sigma p(W/W_{\mathrm{H_2O}})Y_{\mathrm{H_2O}}(T^4 - T^4_{\infty}) - 2W_{\mathrm{H_2}}q\omega$$

$$\frac{1}{r^2}\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{\rho D_{\mathrm{O_2}}r^2}{W_{\mathrm{O_2}}}\frac{\mathrm{d}Y_{\mathrm{O_2}}}{\mathrm{d}r}\right) = -\frac{1}{r^2}\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{\rho D_{\mathrm{H_2O}}r^2}{2W_{\mathrm{H_2O}}}\frac{\mathrm{d}Y_{\mathrm{H_2O}}}{\mathrm{d}r}\right) = \frac{1}{r^2}\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{\rho Dr^2}{2W_{\mathrm{H_2}}}\frac{\mathrm{d}Y}{\mathrm{d}r}\right) = \omega$$

with boundary conditions

$$\begin{cases} r = 0: \quad \mathrm{d}T/\mathrm{d}r = \mathrm{d}Y_i/\mathrm{d}r = 0\\ r = \infty: \quad T - T_{\infty} = Y - Y_{\mathrm{H}_{2\infty}} = Y_{\mathrm{O}_2} - Y_{\mathrm{O}_{2\infty}} = Y_{\mathrm{H}_{2}\mathrm{O}} = 0 \end{cases}$$

### Steady flame balls

The identity  $\nabla Y_{\text{H}_2} + \alpha_{\text{H}_2} Y_{\text{H}_2} \nabla T/T = T^{-\alpha_{\text{H}_2}} \nabla (T^{\alpha_{\text{H}_2}} Y_{\text{H}_2})$ enables thermal diffusion to be incorporated in a single Fickian-like diffusion term as a function of  $Y = (T/T_{\infty})^{\alpha_{\text{H}_2}} Y_{\text{H}_2}$  with **increased diffusivity**  $D = (T/T_{\infty})^{-\alpha_{\text{H}_2}} D_{\text{H}_2}$ , so that

$$\frac{\frac{1}{r^2}\frac{\mathrm{d}}{\mathrm{d}r}\left(\lambda r^2\frac{\mathrm{d}T}{\mathrm{d}r}\right) = 4\kappa_{\mathrm{H}_{2O}}\sigma p(W/W_{\mathrm{H}_{2O}})Y_{\mathrm{H}_{2O}}(T^4 - T^4_{\infty}) - 2W_{\mathrm{H}_2}q\omega}{\frac{1}{r^2}\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{\rho D_{\mathrm{H}_2O}r^2}{W_{\mathrm{O}_2}}\frac{\mathrm{d}Y_{\mathrm{H}_2O}}{\mathrm{d}r}\right) = -\frac{1}{r^2}\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{\rho D_{\mathrm{H}_2O}r^2}{2W_{\mathrm{H}_2O}}\frac{\mathrm{d}Y_{\mathrm{H}_2O}}{\mathrm{d}r}\right) = \frac{1}{r^2}\frac{\mathrm{d}}{\mathrm{d}r}\left(\frac{\rho Dr^2}{2W_{\mathrm{H}_2}}\frac{\mathrm{d}Y}{\mathrm{d}r}\right) = \omega$$

with boundary conditions

$$\begin{cases} r = 0 : \quad \mathrm{d}T/\mathrm{d}r = \mathrm{d}Y_i/\mathrm{d}r = 0\\ r = \infty : \quad T - T_\infty = Y - Y_{\mathrm{H}_{2\infty}} = 0 \end{cases}$$

Assuming for simplicity  $\mathit{D}_{\rm H_{2}O} \propto \mathit{D}_{\rm O_{2}} \propto \mathit{D}$  leads to

$$Y_{\rm H_{2O}} = 2 \frac{W_{\rm H_{2O}}}{W_{\rm O_2}} \frac{D_{\rm O_2}}{D_{\rm H_{2O}}} (Y_{\rm O_{2\infty}} - Y_{\rm O_2}) = \frac{W_{\rm H_{2O}}}{W_{\rm H_2}} \frac{D}{D_{\rm H_{2O}}} (Y_{\rm H_{2\infty}} - Y)$$

#### The thin reaction-layer description

 $\phi = 0.15$ 



For  $\beta \gg 1$  the reaction occurs in a thin layer where  $Y_{\rm H_2}/Y_{\rm H_{2\infty}} \sim (T - T_c)/T_c \sim \beta^{-1}$ 

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

# The reaction-sheet approximation with $T_{\rm max} = T_c$



The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

at

Characteristic scales near turning point  $\frac{1}{r^{2}}\frac{\mathrm{d}}{\mathrm{d}r}\left(\lambda r^{2}\frac{\mathrm{d}T}{\mathrm{d}r}\right) = Q_{\mathrm{H}_{2}}Q_{\mathrm{H}_{2}}\omega \left\{\frac{1}{r^{2}}\frac{\mathrm{d}}{\mathrm{d}r}\left(\lambda r^{2}\frac{\mathrm{d}T}{\mathrm{d}r} + \rho Dqr^{2}\frac{\mathrm{d}Y}{\mathrm{d}r}\right) = 0\right\}$ 

Integrating with boundary conditions  $\frac{\mathrm{d}T}{\mathrm{d}r} = \frac{\mathrm{d}Y}{\mathrm{d}r} = 0$  at r = 0 and  $T - T_{\infty} = Y - Y_{\mathrm{Hom}} = 0$  as  $r \to \infty$ leads to  $(\lambda \propto T^{\nu}, \rho D \propto T^{\gamma})$ 

$$\frac{L_{\mathrm{H}_{2}}c_{p_{\infty}}T_{\infty}}{1+\nu-\gamma}\left(\frac{T}{T_{\infty}}\right)^{1+\nu-\gamma}+qY=\frac{L_{\mathrm{H}_{2}}c_{p_{\infty}}T_{\infty}}{1+\nu-\gamma}+qY_{\mathrm{H}_{2\infty}}$$
  
at the flame (Y = 0): 
$$\boxed{\left(\frac{T_{f}}{T_{\infty}}\right)^{1+\nu-\gamma}=1+\frac{(1+\nu-\gamma)qY_{\mathrm{H}_{2\infty}}}{L_{\mathrm{H}_{2}}c_{p_{\infty}}T_{\infty}}}.$$
  
Integrating for r > r<sub>f</sub> with  $\omega$  = 0:

$$\left(\frac{\partial Y}{\partial r}\right)_{f+} = \frac{1+\nu-\gamma}{1+\nu} \frac{(T_f/T_\infty)^{1+\nu}-1}{(T_f/T_\infty)^{\gamma}[(T_f/T_\infty)^{1+\nu-\gamma}-1]} \frac{Y_{\mathrm{H}_{2\infty}}}{r_f}$$

Across the flame:  $\left| \frac{\rho D}{4W_{\text{H}_{2}}} \left( \frac{\partial Y}{\partial r} \right)_{f+}^{2} \right|_{f+1} = \int_{0}^{\infty} \omega \, \mathrm{d} Y$ 

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

### **Characteristic scales**

$$\begin{split} \left(\frac{T_{f}}{T_{\infty}}\right)^{1+\nu-\gamma} &= 1 + \frac{(1+\nu-\gamma)qY_{H_{2\infty}}}{L_{H_{2}}c_{p_{\infty}}T_{\infty}}. \\ \hline \left(\frac{\partial Y}{\partial r}\right)_{f+} &= \frac{1+\nu-\gamma}{1+\nu} \frac{(T_{f}/T_{\infty})^{1+\nu}-1}{(T_{f}/T_{\infty})^{\gamma}[(T_{f}/T_{\infty})^{1+\nu-\gamma}-1]} \frac{Y_{H_{2\infty}}}{r_{f}} \\ \hline \frac{\rho D}{4W_{H_{2}}} \left(\frac{\partial Y}{\partial r}\right)_{f+}^{2} &= \int_{0}^{\infty} \omega dY \\ \hline w &= \frac{1}{GH} \left(\frac{k_{1f}}{\alpha k_{4f}C_{M}} - 1\right) \frac{k_{2f}k_{3f}}{k_{1b}} \left(\frac{\rho Y_{H_{2}}}{W_{H_{2}}}\right)^{2} \\ \hline As T_{f} \rightarrow T_{c}, \frac{k_{1f}}{\alpha k_{4f}C_{M}} \rightarrow 1, \left(\frac{\partial Y}{\partial r}\right)_{f+} \rightarrow 0, r_{f} \rightarrow \infty \\ \hline r_{c} &= \left(\frac{\beta^{3}D_{c}G_{c}H_{c}}{2(k_{2f}k_{3f}/k_{1b})_{c}(\rho_{c}Y_{H_{2\infty}}/W_{H_{2}})}\right)^{1/2} \\ \hline e &= \frac{O[Q_{R}]}{O[(\nabla(\lambda\nabla T)]} \\ &= 4\kappa_{H_{2}O_{c}}\sigma p \frac{W_{air}}{W_{H_{2}O}} \frac{Y_{H_{2}O_{r}}T_{c}^{3}r_{c}^{2}}{\lambda_{c}} \ll 1 \end{split}$$

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

Extinction limit analysis for  $\beta^{-1} \sim \varepsilon \ln(\varepsilon^{-1})$ 



The effect of far-field radiation introduces an apparent ambient temperature  $T^*_\infty < T_\infty$  such that

$$(\mathit{T}_{\infty} - \mathit{T}^*_{\infty})/\mathit{T}_{\infty} \sim arepsilon \ln(arepsilon^{-1}) \sim eta^{-1}$$

$$R_f = r_f/r_c, \ \Phi = eta(\phi - \phi_I^o), \ \Delta = eta(T_\infty - T_\infty^*)/T_\infty \sim O(1)$$

The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

### **Extinction limit results**



The reduced-kinetic description of hydrogen-air premixed-combustion problems relevant for safety applications

### (Some) Conclusions

- Reduced-kinetic mechanisms appropriate for low-temperature ignition and ultra-lean premixed combustion have been derived and used to develop explicit analytic expressions for quantities of practical interest in connection with safety applications (i.e., ignition times and flammability limits).
- The reduced-kinetic descriptions can be used to shorten computational times in numerical calculations and can also aid further analytical work on deflagration and flame-ball stability.