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Pulverized coal combustion and gasification

Cold air + coal

Hot air

Mathematical modeling of pulverized coal combustion 4 / 34



Main modeling approaches for coal combustion

Industrial furnace

Gas phase RANS equations closed with turbulence model
for gas phase

Lagrangian particle tracking with dispersion modeling and
PSI-method for phase exchange

Turbulence-Chemistry interaction model
1 “Eddy-Break-Up” model
2 Mixture fraction + assumed shape PDF method (Smith

USU, Smoot BYU)
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1 “Eddy-Break-Up” model

Solving equations for mean fuel and oxygen mass fraction, ỸF ,
ỸO :

∂ỸF

∂t
+ ũj

∂ỸF

∂xj
=

1

〈ρ〉
∂

∂xj

(
〈ρ〉 νeff

Sct

∂ỸF

∂xj

)
+ S̃c

F + S̃coal
F

S̃F = −A1ρ
ε

k
min(ỸF , ỸO)

Main issue: A1 = 2 to A1 = 32 used in applications
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2 “Mixture fraction” method

Based on the assumption that reactions are mixing controlled

Three stream mixing problem of volatiles, char, and air

Char mixture fraction Z1 =
mc

mox + mc + mv

Volatile mixture fraction Z2 =
mv

mox + mc + mv

Enthalpy

Assume chemical equilibrium: e.g. T = T (Z1,Z2, h)

Presume the shape of the Favre PDF f̃Z1,Z2,h

T̃ (x, t) =

∫∫∫
T (Ẑ1, Ẑ2, ĥ)f̃Z1,Z2,h(Ẑ1, Ẑ2, ĥ; x, t) · dẐ1 · dẐ2 · dĥ.
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2 “Mixture fraction” method

To presume the shape of the joint PDF

Assume statistical independence of Z1,Z2, h

Neglect fluctuations of h

f̃Z1,Z2,h(Ẑ1, Ẑ2, ĥ; x, t) ≈ f̃Z1 (Ẑ1; x, t)f̃Z2 (Ẑ2; x, t)δ(h − h̃)

Assume marginal β-PDF (parametrized by first two moments):

∂Z̃2

∂t
+ ũj

∂Z̃2

∂xj
=

1

〈ρ〉
∂

∂xj

(
〈ρ〉 νeff

Sct

∂Z̃2

∂xj

)
+ S̃dev

∂Z̃
′′2
2

∂t
+ ũj

∂Z̃
′′2
2

∂xj
=

1

〈ρ〉
∂

∂xj

(
〈ρ〉 νt

Sct

∂Z̃
′′2
2

∂xj

)
+ 2

νt

Sct

∂Z̃
′′2
2

∂xk

∂Z̃
′′2
2

∂xj

− Cφ
ε

k
Z̃

′′2
2 + ˜Z ′′2

2 S
′′
dev

Main issues:

Enthalpy fluctuations might be significant

Statistical independence questionable
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Alternative: Transported PDF method

Solve a transport equation for f̃Z1,Z2,h(Ẑ1, Ẑ2, ĥ; x, t)

Advantages:

No independence assumption necessary

Fluctuations of all scalars included

Can be easily extended to better chemistry models

Refined chemistry models:

Two or more different volatile streams

Finite rate chemistry by using skeletal/detailed reaction
mechanism
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Gas phase PDF transport equation

Consider one point mass density function (MDF)
Fg (v,ψ; x, t) = ρ(ψ)fg (v,ψ; x, t)∫
Fg (v,ψ; x, t)dψdv = αg (x, t) 〈ρ(x, t)〉 = ρ(x, t)

Derive the exact transport equation for Fg from the Navier-Stokes
equation for tow phase flow

∂Fg

∂t
+ vj

∂Fg

∂xj
+

∂

∂vi

[
1

ρ

(
− ∂p
∂xi

+ ρgi + 〈Sui 〉
)
Fg

]
=− ∂

∂vi
[〈ai | v,ψ〉Fg ]− ∂

∂ψα
[〈θα| v,ψ〉Fg ]− ∂

∂ĥ
[〈Srad | v,ψ〉Fg ]

− ∂

∂ĥ

[〈
ḣcr

∣∣∣ v,ψ〉Fg

]
+

1

ρ(ψ)
〈Sm| v,ψ〉Fg
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Main difficulties with the PDF equation

Conditional acceleration

− ∂

∂vi
[〈ai | v,ψ〉Fg ] = − ∂

∂vi

[
1

ρ(ψ)

〈
−∂p

′

∂xi
+
∂τ ′ij
∂xj

+ S ′
ui

∣∣∣∣∣ v,ψ
〉]

Micro mixing

− ∂

∂ψα
[〈θα| v,ψ〉Fg ] =

∂

∂ψα

[
1

ρ(ψ)

〈
−
∂Jα′j

∂xj

∣∣∣∣∣ v,ψ
〉]

Conditional phase exchange terms
〈
ḣcr

∣∣∣ v,ψ〉, 〈Sm| v,ψ〉

High dimensionality (dim = 2 + 2 + 3 = 5)
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Numerical solution of the PDF equation

PDF equation ⇐⇒

∂fφ

∂t
= −a

∂fφ

∂ψ
+ D

∂2fφ

∂ψ2
, D =

b2

2
, on ψ ∈ (−∞,∞)

fφ(ψ; t = 0) = δ(ψ)

−0.2 0 0.2 0.4 0.6
0

2

4

6

8

f φ
(ψ

;t
=

1
)

ψ
−0.2 0 0.2 0.4 0.6

0

2

4

6

8

f φ
(ψ

;t
=

1
.5

)

ψ

Monte Carlo method

dφ(t;ωi ) = a dt+bdWt (ωi ), φ(i)(t = 0) = 0

dWt increments of a Wiener process:
normal random variables with N (0, dt)

0 0.2 0.4 0.6 0.8 1
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−0.02

0
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t

φ
(t

)

Trajectories of 3 realizations for a = 0.1,
b = 0.05:
Euler-Maruyama scheme with ∆t = 0.005
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Gas phase Monte Carlo model

Position dx∗i = u∗i dt

Velocity (SLM-model)

du∗i =

(
− 1

ρ∗

[
∂p

∂xi

]∗
+ gi +

〈Sui 〉
ρ∗

)
dt

−
(

1

2
+

3

4
C0

)[
1

τ

]∗
(u∗i − [ũi ]

∗) dt + (C0 [ε]∗)
1/2

dWi

Composition (LMSE-model)

dZ∗i = − [ωφ]∗

2

(
Z∗i −

[
Z̃i

]∗)
dt + S∗Zi

dt

dh∗ = − [ωφ]∗

2

(
h∗ −

[
h̃
]∗)

dt + S∗raddt + ḣ∗crdt + S∗h dt

Particle weight

d [w∗m∗]

dt
=
(
S∗Z1

+ S∗Z2

)
[w∗m∗]
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Mixture fraction source terms

Mass transfer creates
fluctuations in mixture fractions

Only some DNS results for
evaporating droplets available

No droplets

With droplets

Reveillon and Vervisch, Comb. and Flame 2000

Reveillon and Vervisch, Comb. and Flame 2000

Scatter plot of mixture fraction
source term

Line denotes conditional source
term 〈SZ2 |Z2〉p ∼ Z 2

2
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Mass transfer terms continued

We would need 〈SZ1 |Z1,Z2, h〉p, 〈SZ2 |Z1,Z2, h〉p
Joint gas phase - solid phase statistics not available

Only 〈SZ1〉p , 〈SZ2〉p are available ⇒ Need a model

Following Reveillon and Vervisch:

S∗Z1
= 〈SZ1 |Z1,Z2〉 =

{
γ1 ·

(
cm1 + Z∗2

1

)
· X ∗O2

if Z∗1 < 0.35

0 otherwise,

S∗Z2
= 〈SZ2 |Z2〉 =

{
γ2 ·

(
cm2 + Z∗2

2

)
if Z∗2 < 0.2

0 otherwise.

Determine γ1, γ2 such that unconditional mean is recovered:

γ2(x, t) =
ρ 〈SZ2〉p∫
S∗Z2
Fgdψdv
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Coal particle MDF

Coal particle properties:

position X+
p (t), velocity u+

p (t), diameter D+
p (t), density ρ+

p (t),
temperature T+

p (t)

the gas velocity “seen” by the particle u+
s (t)

the gas composition “seen” by the particle φ+
s (t)

for short [X+
p (t),Φ+(t)]

particle mass m+
p = ρ+

p πD
+3
p /6 is a function of Φ+.

Coal particle mass density function:

Fp(x,Ψ; t) =

〈∑
+

m+
p δ(X+

p (t)− x) · δ(Φ+(t)−Ψ)

〉
,

such that Fp(x,Ψ; t) · dΨ gives the probable mass of coal particles present
at (x, t) with properties in the range [Ψ,Ψ + dΨ]
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Coal particle MDF equation

Now assume:

laws for dΦ+
i /dt and dm+

p /dt are given

particle collisions not relevant (dilute particle phase)

∂Fp

∂t
+vp,j

∂Fp

∂xj
= − ∂

∂Ψi

[〈
dΦ+

i

dt

∣∣∣∣ x,Ψ; t

〉
p

Fp

]
+

〈
1

m+
p

dm+
p

dt

∣∣∣∣ x,Ψ; t

〉
p

Fp,

Lagrangian particle evolution laws in general semi-empirical

No laws known for “seen“ gas velocity φ+
s (t) and ”seen”

composition φ+
s (t)

MDF transport equation high dimensional

=⇒ Modeling and numerical solution by Monte Carlo method
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Solid phase Monte Carlo method

Consider:

A set of uniformly distributed Lagrangian parcels (stochastic coal
particles)

Each parcel represents independent realization of the joint
properties

The ensemble provides and approximation of the exact MDF:

Fp(x,Ψ; t) ≈ FL
p (x,Ψ; t) =

〈∑
∗

n∗pm
∗
p · δ(X∗p(t)− x) · δ(Φ∗(t)−Ψ)

〉
p

A parcel ∗ is not in one-to-one correspondence to a “real” coal
particle ⇒ hence the weight factor n∗p
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Solid phase Monte Carlo method

Position
dX ∗p,i
dt

= u∗p,i ,

Velocity (Schiller-Neumann drag law)

du∗p,i
dt

=
u∗s,i − u∗p,i

τ∗p
− 1

ρ∗p

[
∂ 〈p〉
∂xi

]∗
+ gi .

Seen velocity (given for fluctuating seen velocity u∗s
′′

= u∗s − ũ)

du∗s,i
′′

= −
(
u∗p,j −

[〈
u∗p,j
〉
|p

]∗
+

[〈
u∗s,j

′′〉
|p

]∗)[
∂ũi

∂xj

]∗
dt

+
1

[ρ]∗
∂ρũ′′i u

′′
j

∂xj
dt + Gs,ij u

∗
s,j

′′
dt + Bs,ijdWj
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Solid phase Monte Carlo method

Temperature (Nusselt according to Ranz-Marshall)

dm∗pcp,pT
∗
p

dt
= πD∗p Nu km

(
T ∗s − T ∗p

)
+ εpD

∗
p

2πσ

(
G

4σ
− T ∗p

4

)
Seen temperature and composition

T ∗s = T ∗(i) and X ∗s,ox = X ∗O2
(i), i ∼ U([1,Npg ,cell ]).

Mass (assume diameter remains constant)

dm∗p
dt

=
D∗p

3

6
π
dρ∗p
dt

= ṁ∗vol + ṁ∗char

I First Devolatilization (single rate according to Badzioch and
Hawksley)

I Then char combustion according to BCURA model
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Phase coupling

Mass transfer

〈SZ2〉 = − 1

VΩk
ρ

∑
∗∈Ωk

n∗pṁ
∗
vol

Heat transfer

ḣ∗cr = − 1

VΩk
ρ

∑
∗∈Ωk

n∗pm
∗
pcp,p

dT ∗p
dt

Enthalpy of the added mass e.g. volatiles

hvol =

∑
∗∈Ωk

n∗p · ṁ∗vol

(
cp,p

(
T ∗p − Tref ,0

)
+ h0

vol

)∑
∗∈Ωk

n∗pṁ
∗
vol
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Radiation model

RTE for gray absorbing, emitting and scattering medium consisting of gas,
soot and particles

dI

ds
= − (κgs + κp + σp) I + κgs Ib,g + Eb,p +

σp

4π

∫ 4π

0

I (s′)φ(s′, s)dΩ′

Averaging the RTE leads to new unclosed terms ⇒ Turbulence
Radiation Interaction (TRI)

PDF approach accounts for exact emission TRI:

〈Ib,g 〉 =
σ
〈
T 4
〉

π
, 〈Ib,p〉 =

1

VΩk

〈∑
∗∈Ωk

ε∗n∗p
πD∗p

2

4

σT ∗p
4

π

〉
RTE solved with Discrete Transfer Method (DTM) for isotropic scattering

Solve RTE along predetermined number of rays through the domain

Change of ray intensities in a cell gives radiation heat source

Source term distributed among particles in cell ⇒ S∗rad
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2MW pulverized coal-air flame B1

IFRF furnace No. 1, Measurements by Michel and Payne (1980)

Primary inlet: U = 40.7m/s, T = 463K

Secondary inlet: U = 9.6m/s, T = 773K

Coal: high volatile bituminous Yvol = 0.31, YC = 0.59

〈D〉 = 63µm
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Simulation details

Code: Hybrid Finite Volume - Monte Carlo

Grid: 2-d axisymmetric 204× 56 (axial by radial) cells

Gas Particles: nominal 50 particles per cell

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

d
p
 [µm]

cu
m

ul
at

iv
e 

m
as

s 
fr

ac
tio

n

Coal Parcels: 10 parcels per cell
per size class = 150 parcels per
cell

DTM grid: 41× 12 cells, 1024
rays traced from every boundary
cell surface

Computational time: 20 hours on a single processor “Core2
Quad 2.4 GHz”
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Simulation results: Validation

 0

20

40
1.25m

 0

20

40
4.5m

 0

20

40
1.0m

Ũ
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Simulation results: Validation
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Simulation results: Analysis

Incident radiative wall heat flux
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Simulation results: Analysis
Mean temperature:

Marginal PDF’s:
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Conclusions

PDF simulation results agree very well with measurements

Presumed shape PDF method could be improved using
TPDF results

Probably we should aim at a joint gas phase - particle
phase approach

DNS studies of a simple configuration would greatly aid
the modeling effort
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