

A. Leal Plaza ^{1,2}; FJ. Salguero¹; B. Palma¹; R. Arráns²; A. Ureba¹; I. Romero²

alplaza@us.es Tlf. 954559864

1 Dept. Fisiología Médica y Biofísica, Fac. Medicina. Univ. Sevilla 2 Hosp. Univ. Virgen Macarena, Serv. Radiofísica/Radioterapia, Sevilla

ISI Web of Knowledge*

Radiotherapy Techniques to be used from now on:

Latest 3 years

From the point of view of procedure

- Shaping by MLC.
- Modulation by MLC.

-Collimation dévice integrated in the planning system.

From the point of view of Radiation protection - Less shielding possible for just the necessary MUs (few fields instead of sliding windows). 50 references DAO

From the point of view of the administration

- More treatments with high dose rate.
- Hypofractionation where possible.
- Simultaneous irradiation volumes.

170 references APBI

55 references SIB

290 references MLC

Hardware for these techniqes:

- Robust Multileaf collimation device.
- Good positioning system (IGRT).

Software for these techniques:

- A system able to give solutions with the required precision.
- A system with the correct input sources.
- A system able to consider the actual interactions with the collimation devices.
- A system able to consider the inhomogeneities in the dose calculation.

Problems in Radiotherapy (utopian goal: dual objetive):

- Dose calculation in the patient.
- Fluence map for IMRT.
- To find the MLC segments or apertures.

Mathematical solutions:

- Numeric method for dose calculation (Monte Carlo)
- Optimization procedure to find the weights.
- Sequencer to obtain the apertures.

"An accuracy of about 5% in dose delivery is required to effectively treat certain types of cancers and to reduce complications".

ICRU Reports 24 (1976) and 42 (1988)

$$\begin{aligned} \sigma^2 = \sigma^2_{calib} + \sigma^2_{dose} + \sigma^2_{setup} + \sigma^2_{motion} + \dots \\ and \\ \sigma \geq 2\sigma_{dose} = 5\% \\ then \\ \sigma_{dose} = 2.5\% \end{aligned}$$

General problem: No local energy deposition

KERMA: Kinetic Energy Released in MAterial

Uncertainty linked to measurements

The best analytic algorithm needs experimental measurements for the relative dose in a conventional TPS

What about a protocol for non standard fields (IMRT, Radiosurgery) ?... Capote et al. IAEA

The smaller detector is too big to measure penumbra of small fields

Heterogeneities considerations: -How is considered the build-up region? -What about rebuild effect?

Handbook of radiotherapy physics: theory and practice Escrito por Philip Mayles, Alan E. Nahum, Jean-Claude Rosenwald

Patients do not let us do certain things

Monte Carlo

EGS (Electron Gamma Shower)

Inventors: Neumann and Ulam 1949

John Von Neumann (1903-1957)

Stanislow M. Ulam (1909-1984)

Conventional algorithm:

Radiotherapy:Treatment Planning system (TPS)Pencil beamCollapsed cone

- Monte Carlo Method:
 - Physical problem described by probability well known.
 - Random numbers linked to parameters of the functions.
 - Average values from the sampling with high N.
 - Dose Variance (σ^2). The higher N the lower $\sigma \sigma^2 = 1/N$
 - Efficiency (\in) $\epsilon = 1/(\sigma^2 T)$ T (CPU time)

Radiation transport

- Photon events Rayleigh scattering Photoelectric effect Energy value Atomic number (Z) Compton scattering Pair production Electron events Inelastic collision with e-Bremsstrahlung Electron-positron annihilation Elastic collisions with atomic nucleus

Essential cross sections corresponding to clinical energy values

Attenuation coefficients depending on the incident energy photon in water

Clinical implementation of Monte Carlo

- F Hasenbalg, H Neuenschwander, R Mini and E J Born. Collapsed cone convolution and analytical anisotropic

```
"Issues associated with clinical implementation of
Monte Carlo-based photon and electron
external beam treatment planning"
Med Phys: 34 (2007) 4818-4853
```

AAPM TG 105 report

IJ Chetty, B Curran, J Cygler, J DeMarco, G Ezzell, B Faddegon, I Kawrakow, P Keall, H Liu, C-M Ma, DWO Rogers, D Sheikh-Bagheri, J Seuntjens, JV Siebers

calculation method for photon beams".

- Krieger T, Sauer OA. Phys. Med. Biol. 2005, Vol.50, Iss.5, 859-868. "Monte Carlo- versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom".

Monte Carlo dose engines are already implemented in commercial TPS.

- Monte Carlo calculations of dose in a patient phantom VMC++ in MDS-Nordion (Kawrakow and Fippel).
- Several MCTP home made system and no more:

Linacs simulated by the Medical Physics Sevilla group

Elekta

Siemens

Varian

Radiosurgery IM Step 8

IMRT Step & Shoot

IMRT Dynamic

BEAMnrc/EGSnrc

BEAM Users Manual

 D.W.O. Rogers, C.-M. Ma, G.X. Ding and B. Walters Ionizing Badiation Standards National Research Council of Canada. Ottawa, KTA OR6 dave@irs.phy.nrc.ca
 Printed: September 30, 1997(last edited: 28 Sep 1997.) NRCC Report PIRS-0509(A)revB

Source tex file is: \$OMEGA_HOME/doc/beamum/beam_um/tex Available op-line for authorized users via: http://www.irs.inms.nrc.ca/inms/irs/BEAM/beamhome.html

©NRC Canada, 1997

Component modules

Radiosurgery

IMRT: Effect of the interaction with the MLC

- This study is not feasible using conventional TPS :

Experimental data is needed as input

-Accurate, universal and portable results:

TPS independent dose distribution

- Flexible geometrical specifications :

Dose differences can be associated with any specific MLC geometric variations.

IMRT: Effect of the interaction with the MLC

IMRT: Effect of the interaction with the MLC

Built with the leaf's SIDE Built with the leaf's END

IMRT: Effect of the interaction with the MLC

MC(single focus) versus Film **90 %**

MC(double focus) versus Film 90 %

IMRT simulations

IMRT simulations

Verification of IMRT simulations

Two histories are statistical independent

SERVERS 6 Pentium IV 3 GHz, 1 GB RAM, HD – 250 GB

144 CPUs PIII (72) – PIV (72) 432 GHz, 60.4 GB RAM HD: 9 TB

Santiago /orkshop

3 Switch 3Com 48 - 10/100 Mbps 24 – 1Gbps 6 – 1 Gbps to Server

TPS verification

Modulated electron Radiotherapy (MERT)

"there is no alternative treatment to electron beam therapy"

G. H. Fletcher, "Clinical applications of the electron beam," N. Tapley, ed. (New York, Wiley), 1976:1.R. Mohan, T. D. Brown, D. Kuban,

Shallow Tumors (< 7 cm depth)
Chest wall and no deep breast cancer (< 7 cm)
Accelerated Partial Breast Irradiation (APBI)
Head and Neck
Lip and skin
Boost to nodes
Potential combination with photon IMRT
Simulatenous Irradiated Boost (SIB)

Modulated electron Radiotherapy (MERT)

Kudchadker et al. stated the xMLC as the "most attractive" option for the future when "electron scattering from leaf ends, leaf leakage, and bremsstrahlung production, were taken into account in the computation of dose". Int J Radiat Oncol Biol Phys, 53(4):1023–37, 2002.

The solution is MERT by means of MCTP:

- Full MC simulation

- Not ray-tracing method.

Monte Carlo Treatment Planning is required for shaped electron beams

TRS(pencil beam) vs MC

8.732

12,487

19,200

25.903

32.667

29.400

48.133

\$2.867

29,800

73.367

79.803

86.533

93.267

Radiotherapy optimization methods for modulated beams in Monte Carlo treatment planning

Monte Carlo Treatment Planning for MERT + IMRT

IMRT setup

Electron applicator

eMLC

.01 490 12.85 12.853 21.421 1.000 **Exit Window Exit Window Primary Scat. Foils Primary Scat. Foils** 3.063 7.133 Secondary Scat. Foils Secondary Scat. Foils -Ionization Chamber 11,200 100 **Ionization Chamber** 15.267 19.933 Jaws Jaws 23.400 27.467 xMLC xMLC 01.500 35.600 39.667 43.733 47.800 51.867 55,933 SSD=60cm 60.000

MERT setup

Monte Carlo Treatment Planning for MERT + IMRT

MC simulation and experimental data fit SSD= 60cm (9x9 cm²)

Monte Carlo Treatment Planning for MERT + IMRT Feasibility of the xMLC for electron beams

	Energy (MeV)	$\%D_s$	$\%D_x$	R_{90}	R_{50}	R_p	G
0.6x0.6 cm ²	6	94.9(97.8)	0.8(0.1)	1.3(0.5)	2.3(1.1)	3.1(1.9)	2.2(1.4)
	9	93.5(96.3)	2.5(0.6)	1.5(0.7)	2.9(1.7)	4.5(2.9)	1.5(1.4)
	12	92.7(95.7)	3.3(0.9)	1.5(0.7)	3.3(1.9)	4.9(3.3)	1.4(1.3)
	15	86.4(96.8)	8.0(2.2)	1.7(1.1)	3.9(2.3)	5.7(3.5)	1.4(1.4)
	18	91.3(94.1)	6.7(3.6)	1.7(1.3)	3.7(2.7)	5.3(4.1)	1.4(1.4)
	Energy (MeV)	$\%D_s$	$\%D_x$	R_{90}	R_{50}	R_p	G
3.0x3.0 cm ²	6	81.5(80.5)	0.1(0.1)	1.7(1.7)	2.3(2.3)	3.7(2.9)	2.6(2.5)
	9	91.1(84.8)	0.2(0.3)	2.5(2.5)	3.5(3.5)	4.7(4.7)	2.4(2.2)
	12	93.1(87.2)	0.5(0.6)	2.7(2.9)	4.5(4.5)	5.9(5.9)	2.0(2.2)
	15	91.3(87.2)	1.5(1.9)	2.9(3.5)	5.3(5.3)	7.7(7.3)	1.7(2.0)
	18	90.2(87.2)	2.8(3.8)	3.5(4.1)	6.3(6.3)	8.9(8.5)	1.6(1.8)
	Energy (MeV)	$\%D_s$	$\%D_x$	R_{90}	R_{50}	R_p	G
	$\frac{\rm Energy~(MeV)}{6}$	$\%D_s$ 75.0(76.2)	$\%D_x$ 0.1(0.1)	$\frac{R_{90}}{1.9(1.7)}$	$\frac{R_{50}}{2.3(2.3)}$	$\frac{R_p}{3.1(2.9)}$	$\frac{G}{2.7(2.5)}$
	$\frac{\text{Energy (MeV)}}{6}$ 9	$\frac{\%D_s}{75.0(76.2)} \\ 78.6(82.4)$	$\frac{\%D_x}{0.1(0.1)}$ 0.2(0.3)	$ \begin{array}{r} R_{90} \\ 1.9(1.7) \\ 2.9(2.9) \end{array} $	$\frac{R_{50}}{2.3(2.3)}\\3.7(3.7)$	R_p 3.1(2.9) 4.7(4.7)	$\frac{G}{2.7(2.5)}\\2.9(2.9)$
5.4x5.4 cm ²	Energy (MeV) 6 9 12	$\frac{\%D_s}{75.0(76.2)} \\ 78.6(82.4) \\ 82.7(86.2)$	$\begin{array}{c} \% D_x \\ \hline 0.1(0.1) \\ 0.2(0.3) \\ 0.4(0.6) \end{array}$	$ \begin{array}{r} R_{90} \\ \hline 1.9(1.7) \\ 2.9(2.9) \\ 3.7(3.7) \end{array} $	$\begin{array}{r} R_{50} \\ \hline 2.3(2.3) \\ 3.7(3.7) \\ 4.9(4.9) \end{array}$	$\frac{R_p}{3.1(2.9)} \\ 4.7(4.7) \\ 5.9(5.9)$	$\begin{array}{c} G \\ \hline 2.7(2.5) \\ 2.9(2.9) \\ 2.9(3.0) \end{array}$
5.4x5.4 cm ²	Energy (MeV) 6 9 12 15	$\frac{\%D_s}{75.0(76.2)} \\ 78.6(82.4) \\ 82.7(86.2) \\ 86.8(89.2)$	$\begin{array}{c} \% D_x \\ 0.1(0.1) \\ 0.2(0.3) \\ 0.4(0.6) \\ 1.5(2.1) \end{array}$	$ \begin{array}{r} R_{90} \\ 1.9(1.7) \\ 2.9(2.9) \\ 3.7(3.7) \\ 4.5(4.5) \end{array} $	$\begin{array}{r} R_{50} \\ 2.3(2.3) \\ 3.7(3.7) \\ 4.9(4.9) \\ 6.1(6.3) \end{array}$	$\begin{array}{c} R_p \\ 3.1(2.9) \\ 4.7(4.7) \\ 5.9(5.9) \\ 7.7(7.5) \end{array}$	$\begin{array}{r} G \\ \hline 2.7(2.5) \\ 2.9(2.9) \\ 2.9(3.0) \\ 2.6(3.0) \end{array}$
5.4x5.4 cm ²	Energy (MeV) 6 9 12 15 18	$\begin{array}{c} \% D_s \\ 75.0(76.2) \\ 78.6(82.4) \\ 82.7(86.2) \\ 86.8(89.2) \\ 85.7(88.5) \end{array}$	$\begin{array}{c} \% D_x \\ 0.1(0.1) \\ 0.2(0.3) \\ 0.4(0.6) \\ 1.5(2.1) \\ 3.1(3.9) \end{array}$	$ \begin{array}{r} R_{90} \\ 1.9(1.7) \\ 2.9(2.9) \\ 3.7(3.7) \\ 4.5(4.5) \\ 5.1(4.9) \\ \end{array} $	$\begin{array}{c} R_{50} \\ 2.3(2.3) \\ 3.7(3.7) \\ 4.9(4.9) \\ 6.1(6.3) \\ 7.5(7.7) \end{array}$	$\begin{array}{c} R_p \\ 3.1(2.9) \\ 4.7(4.7) \\ 5.9(5.9) \\ 7.7(7.5) \\ 9.7(9.5) \end{array}$	$\begin{array}{c} G \\ 2.7(2.5) \\ 2.9(2.9) \\ 2.9(3.0) \\ 2.6(3.0) \\ 2.4(2.5) \end{array}$
5.4x5.4 cm ²	Energy (MeV) 6 9 12 15 18 Energy (MeV)	$\frac{\%D_s}{75.0(76.2)} \\78.6(82.4) \\82.7(86.2) \\86.8(89.2) \\85.7(88.5) \\\hline\%D_s$	$\begin{array}{c} \% D_x \\ 0.1(0.1) \\ 0.2(0.3) \\ 0.4(0.6) \\ 1.5(2.1) \\ 3.1(3.9) \end{array}$	$ \begin{array}{r} R_{90} \\ 1.9(1.7) \\ 2.9(2.9) \\ 3.7(3.7) \\ 4.5(4.5) \\ 5.1(4.9) \\ \hline R_{90} \end{array} $	$\begin{array}{r} R_{50} \\ 2.3(2.3) \\ 3.7(3.7) \\ 4.9(4.9) \\ 6.1(6.3) \\ 7.5(7.7) \end{array}$	$\begin{array}{c} R_p \\ 3.1(2.9) \\ 4.7(4.7) \\ 5.9(5.9) \\ 7.7(7.5) \\ 9.7(9.5) \end{array}$	$\begin{array}{c} G \\ \hline 2.7(2.5) \\ 2.9(2.9) \\ 2.9(3.0) \\ 2.6(3.0) \\ 2.4(2.5) \\ \hline G \end{array}$
5.4x5.4 cm ²	Energy (MeV) 6 9 12 15 18 Energy (MeV) 6	$\frac{\%D_s}{75.0(76.2)} \\ 78.6(82.4) \\ 82.7(86.2) \\ 86.8(89.2) \\ 85.7(88.5) \\ \hline \%D_s \\ 72.7(73.8) \\ \hline$	$\begin{array}{c} \% D_x \\ 0.1(0.1) \\ 0.2(0.3) \\ 0.4(0.6) \\ 1.5(2.1) \\ 3.1(3.9) \\ \hline \% D_x \\ 0.1(0.1) \end{array}$	$ \begin{array}{r} R_{90} \\ 1.9(1.7) \\ 2.9(2.9) \\ 3.7(3.7) \\ 4.5(4.5) \\ 5.1(4.9) \\ \hline R_{90} \\ 1.9(1.7) \\ \end{array} $	$\begin{array}{r} R_{50} \\ 2.3(2.3) \\ 3.7(3.7) \\ 4.9(4.9) \\ 6.1(6.3) \\ 7.5(7.7) \\ \hline R_{50} \\ 2.3(2.3) \end{array}$	$\begin{array}{c} R_p \\ 3.1(2.9) \\ 4.7(4.7) \\ 5.9(5.9) \\ 7.7(7.5) \\ 9.7(9.5) \\ \hline R_p \\ 3.1(2.9) \end{array}$	$\begin{array}{r} G \\ \hline 2.7(2.5) \\ 2.9(2.9) \\ 2.9(3.0) \\ 2.6(3.0) \\ 2.4(2.5) \\ \hline G \\ \hline 2.8(2.5) \\ \end{array}$
5.4x5.4 cm ²	$\frac{\text{Energy (MeV)}}{6} \\ 9 \\ 12 \\ 15 \\ 18 \\ \hline \frac{\text{Energy (MeV)}}{6} \\ 9 \\ 9 \\ \hline \end{array}$	$\frac{\%D_s}{75.0(76.2)} \\78.6(82.4) \\82.7(86.2) \\86.8(89.2) \\85.7(88.5) \\\hline\%D_s \\72.7(73.8) \\78.1(78.6) \\\hline$	$\begin{array}{c} \% D_x \\ 0.1(0.1) \\ 0.2(0.3) \\ 0.4(0.6) \\ 1.5(2.1) \\ 3.1(3.9) \\ \hline \% D_x \\ 0.1(0.1) \\ 0.3(0.3) \end{array}$	$ \begin{array}{r} R_{90} \\ 1.9(1.7) \\ 2.9(2.9) \\ 3.7(3.7) \\ 4.5(4.5) \\ 5.1(4.9) \\ \hline R_{90} \\ 1.9(1.7) \\ 2.9(2.9) \\ \end{array} $	$\begin{array}{r} R_{50} \\ 2.3(2.3) \\ 3.7(3.7) \\ 4.9(4.9) \\ 6.1(6.3) \\ 7.5(7.7) \\ \hline R_{50} \\ 2.3(2.3) \\ 3.7(3.7) \end{array}$	$\begin{array}{r} R_p \\ 3.1(2.9) \\ 4.7(4.7) \\ 5.9(5.9) \\ 7.7(7.5) \\ 9.7(9.5) \\ \hline R_p \\ 3.1(2.9) \\ 4.7(4.5) \end{array}$	$\begin{array}{c} G \\ 2.7(2.5) \\ 2.9(2.9) \\ 2.9(3.0) \\ 2.6(3.0) \\ 2.4(2.5) \\ \hline G \\ 2.8(2.5) \\ 2.9(2.8) \end{array}$
5.4x5.4 cm ² 9.0x9.0 cm ²	Energy (MeV) 6 9 12 15 18 Energy (MeV) 6 9 12	$\frac{\%D_s}{75.0(76.2)} \\78.6(82.4) \\82.7(86.2) \\86.8(89.2) \\85.7(88.5) \\\hline\%D_s \\72.7(73.8) \\78.1(78.6) \\83.4(79.8) \\\hline$	$\begin{array}{c} \% D_x \\ 0.1(0.1) \\ 0.2(0.3) \\ 0.4(0.6) \\ 1.5(2.1) \\ 3.1(3.9) \\ \hline \% D_x \\ 0.1(0.1) \\ 0.3(0.3) \\ 0.5(0.6) \end{array}$	$\begin{array}{r} R_{90} \\ 1.9(1.7) \\ 2.9(2.9) \\ 3.7(3.7) \\ 4.5(4.5) \\ 5.1(4.9) \\ \hline R_{90} \\ 1.9(1.7) \\ 2.9(2.9) \\ 3.9(3.7) \end{array}$	$\begin{array}{r} R_{50} \\ 2.3(2.3) \\ 3.7(3.7) \\ 4.9(4.9) \\ 6.1(6.3) \\ 7.5(7.7) \\ \hline \\ R_{50} \\ 2.3(2.3) \\ 3.7(3.7) \\ 4.9(4.7) \\ \end{array}$	$\begin{array}{r} R_p \\ 3.1(2.9) \\ 4.7(4.7) \\ 5.9(5.9) \\ 7.7(7.5) \\ 9.7(9.5) \\ \hline \\ R_p \\ 3.1(2.9) \\ 4.7(4.5) \\ 5.9(5.7) \\ \end{array}$	$\begin{array}{c} G\\ \hline 2.7(2.5)\\ 2.9(2.9)\\ 2.9(3.0)\\ 2.6(3.0)\\ 2.4(2.5)\\ \hline G\\ \hline 2.8(2.5)\\ 2.9(2.8)\\ 3.0(3.1)\\ \end{array}$
5.4x5.4 cm ² 9.0x9.0 cm ²	Energy (MeV) 6 9 12 15 18 Energy (MeV) 6 9 12 15 12 15 18	$\frac{\%D_s}{75.0(76.2)} \\78.6(82.4) \\82.7(86.2) \\86.8(89.2) \\85.7(88.5) \\\hline\%D_s \\72.7(73.8) \\78.1(78.6) \\83.4(79.8) \\88.2(86.2) \\\hline$	$\begin{array}{c} \% D_x \\ 0.1(0.1) \\ 0.2(0.3) \\ 0.4(0.6) \\ 1.5(2.1) \\ 3.1(3.9) \\ \hline \% D_x \\ 0.1(0.1) \\ 0.3(0.3) \\ 0.5(0.6) \\ 1.7(2.2) \end{array}$	$\begin{array}{r} R_{90} \\ \hline 1.9(1.7) \\ 2.9(2.9) \\ 3.7(3.7) \\ 4.5(4.5) \\ 5.1(4.9) \\ \hline R_{90} \\ \hline 1.9(1.7) \\ 2.9(2.9) \\ 3.9(3.7) \\ 4.9(4.7) \end{array}$	$\begin{array}{r} R_{50} \\ 2.3(2.3) \\ 3.7(3.7) \\ 4.9(4.9) \\ 6.1(6.3) \\ 7.5(7.7) \\ \hline \\ R_{50} \\ 2.3(2.3) \\ 3.7(3.7) \\ 4.9(4.7) \\ 6.3(6.3) \\ \end{array}$	$\begin{array}{r} R_p \\ 3.1(2.9) \\ 4.7(4.7) \\ 5.9(5.9) \\ 7.7(7.5) \\ 9.7(9.5) \\ \hline \\ R_p \\ 3.1(2.9) \\ 4.7(4.5) \\ 5.9(5.7) \\ 7.7(7.5) \\ \end{array}$	$\begin{array}{c} G\\ \hline 2.7(2.5)\\ 2.9(2.9)\\ 2.9(3.0)\\ 2.6(3.0)\\ 2.4(2.5)\\ \hline G\\ 2.8(2.5)\\ 2.9(2.8)\\ 3.0(3.1)\\ 3.0(3.1)\\ \end{array}$
5.4x5.4 cm ² 9.0x9.0 cm ²	Energy (MeV) 6 9 12 15 18 Energy (MeV) 6 9 12 15 18 12 18	$\frac{\%D_s}{75.0(76.2)} \\78.6(82.4) \\82.7(86.2) \\86.8(89.2) \\85.7(88.5) \\\hline\%D_s \\72.7(73.8) \\78.1(78.6) \\83.4(79.8) \\88.2(86.2) \\88.3(86.7) \\\hline$	$\begin{array}{c} \% D_x \\ 0.1(0.1) \\ 0.2(0.3) \\ 0.4(0.6) \\ 1.5(2.1) \\ 3.1(3.9) \\ \hline \% D_x \\ 0.1(0.1) \\ 0.3(0.3) \\ 0.5(0.6) \\ 1.7(2.2) \\ 3.3(4.0) \\ \end{array}$	$\begin{array}{r} R_{90} \\ \hline 1.9(1.7) \\ 2.9(2.9) \\ 3.7(3.7) \\ 4.5(4.5) \\ 5.1(4.9) \\ \hline \hline R_{90} \\ \hline 1.9(1.7) \\ 2.9(2.9) \\ 3.9(3.7) \\ 4.9(4.7) \\ 5.5(5.5) \\ \end{array}$	$\begin{array}{r} R_{50} \\ \hline 2.3(2.3) \\ 3.7(3.7) \\ 4.9(4.9) \\ 6.1(6.3) \\ 7.5(7.7) \\ \hline R_{50} \\ \hline 2.3(2.3) \\ 3.7(3.7) \\ 4.9(4.7) \\ 6.3(6.3) \\ 7.9(7.9) \\ \end{array}$	$\begin{array}{r} R_p \\ 3.1(2.9) \\ 4.7(4.7) \\ 5.9(5.9) \\ 7.7(7.5) \\ 9.7(9.5) \\ \hline \\ R_p \\ 3.1(2.9) \\ 4.7(4.5) \\ 5.9(5.7) \\ 7.7(7.5) \\ 9.7(9.5) \\ \end{array}$	$\begin{array}{r} G \\ \hline 2.7(2.5) \\ 2.9(2.9) \\ 2.9(3.0) \\ 2.6(3.0) \\ 2.4(2.5) \\ \hline G \\ \hline 2.8(2.5) \\ 2.9(2.8) \\ 3.0(3.1) \\ 3.0(3.1) \\ 2.9(3.1) \\ 2.9(3.1) \\ \end{array}$

Cut-outs with BEAMnrc (Block CM)

xMLC segments with BEAMnrc (VARMLC CM) Divergence correction

Larger distance from the MLC to the patient

Segments for weighting optimization process.

Options:

1. Inverse planning optimization procedure: (beamlets weighted for a sequencer)

2. Class solutions based on the experience: (Direct Aperture optimization)

3. A hybrid optimization system (Under construction)

Inverse planning optimization

2° Stage: Optimised Beamlets distribution

Inverse planning optimization

2° Stage: Optimised Beamlets distribution

$$\min \left\{ F = \theta_{\mathcal{O}} \sum_{(x,y,z)\in\mathcal{O}} \sum_{p=1}^{N} \omega_p D_p(x,y,z) + \theta_{\mathcal{P}} \sum_{(x,y,z)\in\mathcal{P}} \sum_{p=1}^{N} \omega_p D_p(x,y,z) \right\} : \\ d_{max} \ge D(x,y,z) \ge d_{min} \quad \forall (x,y,z)\in\mathcal{P}, \\ \omega_m \le \frac{\alpha}{N} \sum_{p=1}^{N} \omega_p, \quad m = 1, 2, \dots, N, \\ \omega_p \ge 0$$

Nonlinear programing (commercially implemented):

Optimization algorithms:

 <u>Gradient method</u>: Newton method; maximun gradient method (Bortfeld 1999, Hristov et al. 2002, Zhang et al. 2004)
 <u>Stocastic algorithm</u>: Simulated annealing method (Rosen et al. 1995, Wu et al. 2000)

Inverse planning optimization

2° Stage: Optimised Beamlets distribution

Theoretical DVH with beamlets

Sequencer for the actual segments

Inverse planning optimization

Previous MC analysis for the sequencer

Inverse planning optimization Fluence maps from the weighted beamlets

X Beamlets

Inverse planning optimization

3° Stage: Segmentation procedure

Inverse planning optimization

3° Stage: Segmentation procedure

Inverse planning optimization

Previous MC analysis for the sequencer

Inverse planning optimization

3° Stage: Segmentation procedure

Inverse planning optimization

3° Stage: Segmentation procedure

Chest Wall cases by MERT with our MCTP

5000

6000

7000

1000

0

2000

3000

4000

Dose (cGv)

Deep region: 9 MeV y 15 MeV

Chest Wall cases by MERT with our MCTP

Deep region: 9 MeV y 15 MeV

Chest Wall cases by MERT with our MCTP Irradiation parameters used for the presented chest wall cases.

	Patient P1		Ang	le E(MeV)	Number of segments	Total MU		
	MC-Blo	cks	325	6 + 9	1 + 2	196 196		
	MC-MI	LC	325	6 + 9	1 + 2	73 + 73		
	MC-MERT 32 Patient P2 Angle		325	6 + 9	4 + 9	121 + 233		
	Patient P2	A	ngle	$\mathrm{E}(\mathrm{MeV})$	Number of segments	Total MU		
	MC-Blocks	;	35	9 + 15	1 + 1	206 + 206		
	MC-MLC		35	9 + 15	1 + 1	79 + 79		
	MC-MERT		35	6 + 9 + 15 $4 + 4 + 5$		95 + 82 + 68		
_	Patient P3	Ang	gle	$\mathrm{E}(\mathrm{MeV})$	Number of segments	Total MU		
	MC-Blocks	35	5	6 + 9	1 + 1	193 + 193		
	MC-MLC 35		6 + 9	1 + 1	139 + 139			
	MC-MERT 35 6		6 + 9 + 12	7 + 3 + 6	224 + 127 + 232			
i								
_	Patient P4	Ang	gle	$\mathrm{E}(\mathrm{MeV})$	Number of segments	Total MU		
	MC-Blocks	32	7	6 + 9 + 12	1 + 1 + 1	191 + 191 + 191		
MC-MLC 327		7	6 + 9	1 + 1	195 + 195			
MC-MERT 315		6 deg + 12	3 + 11	185 + 275				

Modulated electron radiotherapy treatment planning using a photon multileaf collimator for post-mastectomized chest walls. Salguero et al. Radiother & Oncol. 2009 Dec;93(3):625-32.

Chest Wall cases by MERT with our MCTP DVH Comparison (I)

Data from: EA Krueger at al. Int.J.Radiat.Oncol.*Biol.*Phys. Vol. 56, Nº4, pp1023-1037

Chest Wall cases by MERT with our MCTP

DVH Comparison (II)

Data from: EA Krueger at al. Int.J.Radiat.Oncol.*Biol.*Phys. Vol. 56, Nº4, pp1023-1037

Chest Wall cases by MERT with our MCTP Comparison (III)

Int.J.Radiat.Oncol.*Biol.*Phys. Vol. 52, Nº5, pp1220-1230

Chest Wall cases by MERT with our MCTP

Comparison (IV)

Int.J.Radiat.Oncol.*Biol.*Phys. Vol. 52, Nº5, pp1220-1230

Standard Tangents Photon and electron (30%/70%) Partially wide tangent fields (PWTFs) Photon and electron (20%/80%) Cobalt Reverse hockey stick (RHS) 9 and 12-MeV electron field (Electron)

HAN shallow tumors by MERT with our MCTP

Parotid glands case

PTV Hemi-jaw Larinx mucous Marrow

HAN shallow tumors by MERT with our MCTP

Parotid glands case

Final dose distribution

HAN shallow tumors by MERT with our MCTP

Parotid glands case

Beamlets dose distribution

HAN shallow tumors by MERT with our MCTP

Parotid glands case

Han shallow tumors by MERT with our MCTP Parotid glands case

Han shallow tumors by MERT with our MCTP Ear tumor case

Han shallow tumors by MERT with our MCTP Oropharinge case

Intensity- and energy-modulated electron radiotherapy by means of an xMLC for head and neck shallow tumors. *Salguero et al. Physics in Medicine and Biology.* 55, 5 (2010)

Experimental verification

Experimental verification

Experimental verification

Cámaras de Ionización

Cámaras de Ionización

Monte Carlo

Experimental verification Relative dose verification: Radiochromic films

Experimental verification Relative dose verification: Radiochromic films

Experimental verification Relative dose verification: Radiochromic films

Experimental verification

Absolute dose verification: Plane-parallel ion chamber

	Case	Experimental dose (cGy)	MC dose (cGy)	Difference
	P1	217.5	217.2	-0.1%
Chest wall cases	P2	219.1	221.2	+1.0%
	$\mathbf{P3}$	216.2	213.2	-1.4%
	P4	157.5	153.1	-2.9%

		Experimental dose (cGy)	Monte Carlo dose (cGy)	Difference
	Case 1	201.1	204.1	-1.47%
	Case 2	255.9	253.2	+1.07%
20	Case 3	231.9	233.0	-0.47%
22	Case 4	245.2	242.7	+1.03%

Shallow H&N cases

Can we extend the model? Yes, IMRT+MERT

-We have the same collimation device for both type of particles.

- We have the same algorithm to calculate the dose with the wished precisition:

Combination IMRT+MERT Accelerated Partial Breast Irradiation

Combination IMRT+MERT Accelerated Partial Breast Irradiation

Combination IMRT+MERT Accelerated Partial Breast Irradiation

Combination IMRT+MERT Simultaneous Irradiated Boost

Combination IMRT+MERT

Technique	Case	Beam type	Energy (gantry angle)	Number of segments	Monitor Units
	D1	Electrons	12 MeV (295º) 3		28.0, 75.5, 59.7
	F1		15 MeV (295º)	4	60.5, 28.1, 33.3, 32.9
PBI		Electrons	18 MeV (90º)	4	5.4, 11.2, 25.4, 12.6
	P2	Photons	6 MV (342º)	4	20.3, 16.8, 33.9, 62.1
			6 MV (150º)	2	209.0, 0
	Do		12 MeV (320º)	4	60.4, 50.1, 3.5, 39.4
	P3	Electrons	15 MeV (320º)	6	32.3, 37.5, 38.4, 5.2, 30.9, 34.8
		Electrons	12 MeV	1	19.4
SIB	P3	Photons	6 MV (39°)	2	95.3, 10.1
			6 MV (213°)	2	96.4, 9.7

TCP and NTCP for PBI cases

* El fraccionamiento es igual a 2 Gy debido a que se convirtió la dosis a dosis equivalente del fraccionar									miento		
		convencio	onal.								
	Dosis				10	P1		P2		P3	
	(Gy)/Frac	а	TD50	γ	γ/β	EUD	TCP (%)	EUD	ТСР (%)	EUD	TCP (%)
	2 (*)	-7.2 (1)	36.24 (2)		3 (4)	56.39	97.17	56.42	97.18	55.95	96.99
Breast TCP				2 (3)	4 (5)	56.09	97.05	56.11	97.06	55.67	96.87
					4.6 (6)	55.96	96.99	55.97	97.00	55.54	96.82
				0.88 (2)	4 (5)	56.09	82.31	56.11	82.33	55.67	81.92
NTCP	Dosis					P1		P2		P3	
	(Gy)/Frac	γ/β	а	TD50	Y	EUD	NTCP (%)	EUD	NTCP (%)	EUD	NTCP (%)
							- \- /	-			
Descursonitio			1 (2)	24.5 (7)) (2)	0.74	0.00	2 00	0.00	202	0.00
Pneumonitis			1 (3)	24.5 (7) 30.8 (8)	2 (3)	0.74	0.00	3.00	0.00	2.82	0.00
Pneumonitis Pericarditis			1 (3)	24.5 (7) 30.8 (8) 50 (7)	2 (3) 3 (7)	0.74	0.00	3.00	0.00	2.82	0.00
Pneumonitis Pericarditis			1 (3) 3 (3)	24.5 (7) 30.8 (8) 50 (7) 52.3 (9)	2 (3) 3 (7) 1.28 (9)	0.74 0.86	0.00	3.00 0.77	0.00	2.82 1.20	0.00
Pneumonitis Pericarditis Fibrosis	2 (*)	3 (4, 8-10)	1 (3) 3 (3)	24.5 (7) 30.8 (8) 50 (7) 52.3 (9)	2 (3) 3 (7) 1.28 (9) 3.4 (6)_	0.74 0.86	0.00	3.00 0.77	0.00	2.82	0.00
Pneumonitis Pericarditis Fibrosis	2 (*)	3 (4, 8-10)	1 (3) 3 (3)	24.5 (7) 30.8 (8) 50 (7) 52.3 (9) 60 (10)	2 (3) 3 (7) 1.28 (9) 3.4 (6) 4 (3)	0.74	0.00	3.00 0.77	0.00	2.82	0.00
Pneumonitis Pericarditis Fibrosis	2 (*)	3 (4, 8-10)	1 (3) 3 (3) 0.78 (4)	24.5 (7) 30.8 (8) 50 (7) 52.3 (9) 60 (10) 65 (10)	2 (3) 3 (7) 1.28 (9) 3.4 (6) 4 (3) 4 (3)	0.74 0.86 5.94	0.00 0.00 0.00	3.00 0.77 11.79	0.00 0.00 0.00	2.82 1.20 5.23	0.00 0.00 0.00

Our group is committed with few fields and with just the necessary MUs :

Leakage issue:

MUs in the beam delivery can be reduced :

Dose prescription to the target and as lower as possible integral dose

ISI Web of Knowledge™

Few fields?...

Latest 3 years

Intensity Modulated Arc Therapy (IMAT):

Average MUs with IMAT is lower than with IMRT but the dynamic version one.

Step&Shoot IMRT is slower than IMAT but similar MUs

- RapidArc of Varian is based on DAO (Otto K 2007)

65 references

- Volumetric Modulated Arc Therapy (VMAT) 45 references ERGO++ : <u>MLC shapes are given by anatomic relationship between PTV and OARs</u>

Few fields?...

Not always new techniques and simpler to use are the best.

Hybrid optimization model (our proposal) :

Weights calculation under Linear Programming:

- The problem is reduced to the necessary voxels
- Dose-volume restrictions are not always necessary.
- The calculation time is faster.

Class solutions in an automatic way:

- Few beamlets for the optimization procedure.
- Aperture can be defined from the begining but...

Why don't we use the benefit of our sequencer?

Linear Programming formulation to find weights

$$\begin{array}{l} \textbf{Objetive function} \quad f.o. = P \sum_{i=1}^{N_{pTV}} x_i + Q_{PTV} \sum_{i=1}^{N_{pTV}} y_i + R_{OAR} \sum_{i=N_{ptV}+1}^{N} x_i \\ \\ \begin{array}{l} \displaystyle \sum_{j=1}^{M} B_{ij} \omega_j - x_i \leq D^{max} \quad i = 1, \dots, N_{ptV} \\ \\ \displaystyle \sum_{j=1}^{M} B_{ij} \omega_j + y_i \geq D_{min} \quad i = 1, \dots, N_{ptV} \\ \\ \displaystyle \sum_{j=1}^{M} B_{ij} \omega_j - x_i \leq d^{max} \quad i = N_{ptV} + 1, \dots, N \\ \\ \displaystyle \sum_{j=1}^{M} B_{ij} \omega_j - x_i \leq d^{max} \quad i = N_{ptV} + 1, \dots, N \\ \\ \displaystyle Con \quad x_i, y_i \geq 0 \quad \forall i \quad n^{\circ} \text{ of equations: } N + N_{PTV} \\ n^{\circ} \text{ of unkowns: } M + (N + N_{PTV}) \end{array}$$

LP is not feasible for all the potential beamlets but it is the fastest method if the initial problem is adequately reduced.

Linear Programming for a reduced intial problem

1. Voxel reduction:

Is it necessary to know what happen with all voxels?

2. Grouping of beamlets: We need to find the apertures susceptible for weighting.

Smart sequencer for LP optimization Looking for freedom degrees for the fluence weighting.

Matrix for the sequencer

{Thickness} map Metabolic map??

Direct aperture from a sequencing process !!!

20

- Thickness map with the information of structures can be "sequenced" to obtain the smart aperture to be weighted.

- Few "beamlets" linked to "regions of voxels of interest" will allow a fast LP solution with the best set of weights.

- These few segments yes they are worth full simulated MC.

Thanks for your attention

A. Leal Plaza ^{1,2}; FJ. Salguero¹; B. Palma¹; R. Arráns²; A. Ureba¹; I. Romero²

alplaza@us.es Tlf. 954559864

1 Dept. Fisiología Médica y Biofísica, Fac. Medicina. Univ. Sevilla 2 Hosp. Univ. Virgen Macarena, Serv. Radiofísica/Radioterapia, Sevilla

