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@ On treatment planning

Why transport equations?
@ Model for electron transport in tissue

@ Moment models & entropy closure

Numerical challenges

Computational results



Facts & Figures

e December 28, 1895:
X-rays discovered by
Rontgen

e January 12, 1896:

Used for cancer therapy by
Grubbé

e Year 2007:
11.3 million cancer cases
Half of patients receive
radiotherapy?

*WHO data



Clinical Radiotherapy

o Radiotherapy:
Irradiation of tissue with photons (primary particles), electrons
(secondary particles)

@ Future radiotherapy:
Protons / electrons / heavy ions as primary particles

e Planning Goal:
Destroy cancer cells & minimize damage
Treatment plan within 24 hours
Fast simulation (2-3% error, <5 minutes)



Trends in Radiotherapy

Current practice:

@ Select 4-7 beams by hand
& evaluate using dose
calculation

Trends:

@ IMRT: Intensity-modulated
radiation therapy

o IGRT: Image-guided
radiation therapy

@ 4DRT: 4-dimensional
radiation therapy




Why Transport Equations?

e Pencil-Beam/Convolution-Superposition:
Green’s function, semi-empirical
Fast method, but limited accuracy
Errors of up to 12% near inhomogeneties!

@ Monte-Carlo:
Models particle interactions directly
Slow method, used as benchmark

e Deterministic Transport Equations?
Exact modeling of particle interactions
Computational effort comparable to Monte-Carlo?
Starting point for simplified models, use structure for
optimization

!Krieger, Sauer, Phys. Med. Biol. 2005
2Borgers, Phys. Med. Biol. 1998



Literature Review

o Computational methods:
Gifford et al., Comparison of a finite-element multigroup
discrete-ordinates code with Monte-Carlo for radiotherapy
calculations, Phys. Med. Biol. 51 (2006) 675.

@ Treatment planning based on transport equations:
Tervo et al., Optimal control model for radiation therapy
inverse planning applying the Boltzmann transport equation,
Lin. Alg. Appl. 428 (2008) 1230.



ELECTRON TRANSPORT IN TISSUE



Modeling of Particle Transport

‘ Newton’s laws of motion: m;x;(t) = Fi(t, x(t), x(t)) ‘

\L Large number of particles \L

Kinetic equations: 0,f(t,x,v) + vVf(t,x,v) = S(f)(t,x,v) ‘

\L Many collisions \L

Macroscopic equations: 0;E(t,x) + V= VE(t,x) = Q(E)(t, x)




Particle Transport

e Model equation

Q- Vih(x,€,Q) _/ / os(x, e, ¢, Q- Q)p(x, €, Q)dQ de
€ S2
— oD (x, )(x,6,Q) + q(x, €, Q)

1 is number of particles at x € R3 with energy ¢, direction
Qes?
Prescribe 1(x, €, Q) = 1p(x,€,Q) for n(x) -2 <0




Mott and Mgller Scattering for Water

@ Mott elastic scattering:

2 2 2
U(x,e,e/,u): pc(x)Z°(X)re(1 + ¢€) |:17 e(e +2)

2 ’
e+ 2P0 +2n00 0 P || 202t M ] o)

with screening parameter 7

e Mgdller inelastic scattering;:

1
o(x, 6, €', 1) = pe(x)&(e’, )50 u')
iy

o) = 2mr2 (e’ +1)2 1 1 1 2¢' +1

e’(e! +2) 2 (e/ —¢€)? * (e/ +1)2 B (e +1)2¢(e’ — €)

with ¢ < e —ep

@ Contain model parameters pc, Z, pe, €8



Continuous Slowing-Down

@ Small energy loss & small deflection likely

@ Asymptotic analysis for small energy loss
@ Boltzmann continuous slowing-down (BCSD) approximation

Q- Vi e9) =

(_Ts(Xa €, Q- Q/)'l/J(X, €, Q/)dQ/ - J§O) (Xﬂ 6)1/1(Xa €, Q)
S2

3}
+ &(S(X, e)(x,€,Q)) + q(x,€,Q)
with stopping power S

@ Dose

D(x) = /0 h /S S(x,epulx, e, Q)dQde



BCSD Initial Boundary Value Problem

BCSD equation

0
50+ 2V = [ Favae —oi+g

Energy is mathematical time variable

Solve by sweeping backward in energy with “initial value”
P(x,00,2) =0
@ Prescribe ingoing radiation at spatial boundary

V(x,6,Q) = Yp(x,6,2) on ™ ={(x,6,2) : n(x)- Q< 0}



The Need For Approximate Models

Problem:
@ Phase space density ¥(x, €,2) depends on 6 variables

@ Direct discretization leads to very large system of equations

Idea:
@ Try to derive fluid-dynamic-like macroscopic models
@ Analogy: Navier-Stokes can be derived from Boltzmann

@ Investigate hierarchies of approximations



MOMENT MODELS



@ Spherical harmonics:
Y; tensor of spherical harmonics of order /

o Moments:

Yi(x,€) = . »(x, e, Q)Y (Q)dQ

e Moment equations:
Multiply BCSD equation with Y; and integrate over S2



Moment System

Moment system:

0
—a(&ﬁ/) + Va(Brati1 + Brpatisn) = (08 — o)y + g,
Closure problem:

e Model ¢p11

@ Py closure: ¢pn4+1 =0

e Diffusion correction to Py (Levermore)

1
YNt = — = g Oxn

@ Other closures: simplified Py, flux-limited diffusion, closure by
optimal prediction



Minimum Entropy Closure

Idea:

@ Describe system by limited information (finitely many
moments)

@ Most probable state minimizes/maximizes entropy®

e Rational Extended Thermodynamics*

Entropy :

@ Maxwell-Boltzmann
He(w) = | v1ogvag

@ Photons

c2

00 1/3 . . . .
He(w) = [ [ 25 (Dlogd - (5 + 1log(i + 1)d2

3 Jaynes, Phys. Rev. 1957, Minerbo 1978
*Miiller, Ruggeri 1998



Minimum Entropy Closure Il

Entropy Minimization Principle:

@ Determine Yy as

Yme = argminy, Hr(¥)

under the constraints
/ YI*T,DMEdQ:w/ forl:O,...,N
52

Closure:
o Set
N1 = /52 YN 1¥medQ



Mathematical Questions

Moment admissibility:
@ Given sequence of 1),

o Existence of any v such that
[ vrvda—u
52

@ Determinant criterion (a posteriori)
Existence & uniqueness of minimizer

o Existence & uniqueness of minimizer guaranteed for radiative
transfer

@ Issues for Boltzmann's equation®

®Hauck, Levermore, Tits, SIAM J. Control Optim. 2008



Computation of the Minimizer

@ Unconstrained Problem

N

L(t,a) = Hr(¥) = D ey </52 Y/ dQ - @Z}/)

I=0

e Minimizer (Maxwell-Boltzmann)

N
YME = exp (Z a/Y/>

1=0

o Lagrange multipliers a; determined by constraints



My Minimum Entropy Closure

@ Closure explicitly solvable for photons and N =1

e M; minimum entropy®

—g (Stbo) + V1 = qo
€

4 L4 2 m_ 0
—&(51/11) + Vi <31/)0 + 3¢2> = (05’ —0s )1

e Eddington factor

(UMD -1, x(IM)
2 2

%% + %1/}2 = ( Ny ® N1> o,

where N1 = @Dl/’(/Jo

5Minerbo, JQSRT 1978



Properties of the Minimum Entropy Closure

For standard radiative transfer:

@ System dissipates entropy’
atHRW’) <0

e Symmetrizable (Lagrange multipliers as unknowns)
o Correct diffusion and free-streaming limit®
@ Positivity of reconstructed distribution function

@ Expect positivity of radiative energy & flux limitation

"Levermore, J. Stat. Phys. 1996
8Coulombel, Golse, Goudon, Asymptot. Anal. 2005



SIMULATION RESULTS



Comparisons

@ Comparisons with PENELOPE 2008 Monte Carlo code

package

@ Monoenergetic electron beams approximated by narrow
Gaussians in both energy and angle

@ Stopping power S and transport coefficient agl) — a§°) from

ICRU database

@ Dose normalized to dose maximum

Computation times (laptop)

- Penelope with 15 million particles: 2.5 hours
- M1 in 2D on 200x200x450 grid: 40 seconds



10 MeV Electrons on Water

Monte Carlo Dose 3 beams (2cm-10 MeV) in water M1 Dose 3 beams (1cm-10 MeV) in water
6

x{(cm)



10 MeV Electrons on Water ||

Monte Carlo Dose 3 beams (2cm-10 MeV) in water ‘Cut along axis x =3 om of the Dose. Cut along axis y = 1 cm o the Dose.
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15 MeV Electrons on Vertebral Column




OPTIMAL TREATMENT PLANNING



Planning Goal

e Planning goal:
Destroy cancer cells
Minimize dose in healthy tissue
Spare regions at risk

@ Many biological models for radiation effect

e Minimize tracking-type functional:®

J(w):O;T/(D—D)2dx+a2R (D—D)2dx+%"’ (D—D)2dx
Zr ZR Zy

where D(x) = [7° [s2 S(x, €)Y (x, €, Q)dQde.

9Shepard et al., Optimizing the delivery of radiation therapy to cancer
patients, SIAM Rev. 41 (1999) 721.



Constrained Optimization Problem

e Find boundary value 1), > 0 that minimizes:

J(1,bp) :‘IQT/ (D — D)?dx + % (D — D)2dx

Zr ZR

+ 0 [ (D-D)Y2dx+ %5 | (n-Q)(wp — Dp)2dxdQ
2 Jz, 2 )

o Constrained by integro-diffferential equation:
~ 2 (56) + Q- Vi = / GspdQ — oy
86 S2

with boundary condition ¢ = 1, on '™ and 9(x,00,Q) =0



Adjoint Calculus

o Lagrangian: L(¢p, 1, A) = J(b, 1) — (A, E(¢,5)) where
(A E(,465)

// /5 ( (S) + Q- Vyp — /a¢d9'+g°>w> dQdedx
= V([ SON—Q-V A= | 5 0dQY + 0N\ ) dQdedx
LL L I, )

// Sh|= Odex+/ /Oo/sz(n-Q))n/Jdeedx

@ Take functional derivatives with respect to vp, 1, A to obtain
optimality conditions



First-order optimality conditions:

o Forward equation
—0.(SY) + Q- Viath - / GopdQ + 00y = 0
S2

with ¢ = ¢p on '~ and 9(x,00,Q2) =0
o Adjoint equation

SON— Q- VA — / FAdY + o\ = (D - D)
52

with A=0o0n " and A\(x,0,Q2) =0

o Update for control

ac(p—Pp) —A=0



Optimization Method

@ Use update for control as gradient information in optimization
algorithm

e Advantage of adjoints:
Obtain gradient independent of the discretization

e Adjoints vs black-box optimization in 1D example:
Distributed control in 100 points
fmincon: 17 iterations, 1818 function evaluations
fmincon with adjoint: 30 iterations, 647 function evaluations



Example (Pn Discretization in 2D)

i




Conclusions & Future Work

@ Deterministic approach suitable for dose calculation

Investigate different approximations to radiative transfer from
a general point of view and select best for radiotherapy

Consider optimization problems constrained by
integro-differential equation

Many open questions in treatment planning, where
computational scientists can contribute



