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Facts & Figures

December 28, 1895:
X-rays discovered by
Röntgen

January 12, 1896:
Used for cancer therapy by
Grubbé

Year 2007:
11.3 million cancer cases
Half of patients receive
radiotherapya

aWHO data



Clinical Radiotherapy

Radiotherapy:
Irradiation of tissue with photons (primary particles), electrons
(secondary particles)

Future radiotherapy:
Protons / electrons / heavy ions as primary particles

Planning Goal:
Destroy cancer cells & minimize damage
Treatment plan within 24 hours
Fast simulation (2-3% error, <5 minutes)



Trends in Radiotherapy

Current practice:

Select 4-7 beams by hand
& evaluate using dose
calculation

Trends:

IMRT: Intensity-modulated
radiation therapy

IGRT: Image-guided
radiation therapy

4DRT: 4-dimensional
radiation therapy



Why Transport Equations?

Pencil-Beam/Convolution-Superposition:
Green’s function, semi-empirical
Fast method, but limited accuracy
Errors of up to 12% near inhomogeneties1

Monte-Carlo:
Models particle interactions directly
Slow method, used as benchmark

Deterministic Transport Equations?
Exact modeling of particle interactions
Computational effort comparable to Monte-Carlo2

Starting point for simplified models, use structure for
optimization

1Krieger, Sauer, Phys. Med. Biol. 2005
2Börgers, Phys. Med. Biol. 1998



Literature Review

Computational methods:
Gifford et al., Comparison of a finite-element multigroup
discrete-ordinates code with Monte-Carlo for radiotherapy
calculations, Phys. Med. Biol. 51 (2006) 675.

Treatment planning based on transport equations:
Tervo et al., Optimal control model for radiation therapy
inverse planning applying the Boltzmann transport equation,
Lin. Alg. Appl. 428 (2008) 1230.



ELECTRON TRANSPORT IN TISSUE



Modeling of Particle Transport

Newton’s laws of motion: mi ẍi (t) = Fi (t, x(t), ẋ(t))

↓ Large number of particles ↓

Kinetic equations: ∂t f (t, x , v) + v∇f (t, x , v) = S(f )(t, x , v)

↓ Many collisions ↓

Macroscopic equations: ∂tE (t, x) +∇ 1
3κ∇E (t, x) = Q(E )(t, x)



Particle Transport

Model equation

Ω · ∇xψ(x , ε,Ω) =

∫ ∞
ε

∫
S2

σs(x , ε, ε′,Ω · Ω′)ψ(x , ε′,Ω′)dΩ′dε′

− σ(0)
s (x , ε)ψ(x , ε,Ω) + q(x , ε,Ω)

ψ is number of particles at x ∈ R3 with energy ε, direction
Ω ∈ S2

Prescribe ψ(x , ε,Ω) = ψb(x , ε,Ω) for n(x) · Ω < 0



Mott and Møller Scattering for Water

Mott elastic scattering:

σ(x, ε, ε′, µ) =
ρc (x)Z2(x)r2

e (1 + ε)2

4[ε(ε + 2)]2(1 + 2η(x, ε) − µ)2

[
1 −

ε(ε + 2)

2(1 + ε)2
(1 − µ)2

]
δ(ε, ε′)

with screening parameter η

Møller inelastic scattering:

σ(x, ε, ε′, µ) = ρe (x)σ̃(ε′, ε)
1

2π
δ(µ, µ′)

σ̃(ε′, ε) =
2πr2

e (ε′ + 1)2

ε′(ε′ + 2)

[
1

ε2
+

1

(ε′ − ε)2
+

1

(ε′ + 1)2
−

2ε′ + 1

(ε′ + 1)2ε(ε′ − ε)

]

with ε′ < ε− εB
Contain model parameters ρc , Z , ρe , εB



Continuous Slowing-Down

Small energy loss & small deflection likely

Asymptotic analysis for small energy loss

Boltzmann continuous slowing-down (BCSD) approximation

Ω · ∇xψ(x , ε,Ω) =

∫
S2

σ̄s(x , ε,Ω · Ω′)ψ(x , ε,Ω′)dΩ′ − σ(0)
s (x , ε)ψ(x , ε,Ω)

+
∂

∂ε
(S(x , ε)ψ(x , ε,Ω)) + q(x , ε,Ω)

with stopping power S

Dose

D(x) =

∫ ∞
0

∫
S2

S(x , ε)ψ(x , ε,Ω)dΩdε



BCSD Initial Boundary Value Problem

BCSD equation

− ∂

∂ε
(Sψ) + Ω · ∇xψ =

∫
S2

σ̄sψdΩ′ − σ(0)
s ψ + q

Energy is mathematical time variable

Solve by sweeping backward in energy with “initial value”

ψ(x ,∞,Ω) = 0

Prescribe ingoing radiation at spatial boundary

ψ(x , ε,Ω) = ψb(x , ε,Ω) on Γ− = {(x , ε,Ω) : n(x) · Ω < 0}



The Need For Approximate Models

Problem:

Phase space density ψ(x , ε,Ω) depends on 6 variables

Direct discretization leads to very large system of equations

Idea:

Try to derive fluid-dynamic-like macroscopic models

Analogy: Navier-Stokes can be derived from Boltzmann

Investigate hierarchies of approximations



MOMENT MODELS



Moments

Spherical harmonics:
Yl tensor of spherical harmonics of order l

Moments:

ψl(x , ε) =

∫
S2

ψ(x , ε,Ω)Y ∗l (Ω)dΩ

Moment equations:
Multiply BCSD equation with Yl and integrate over S2



Moment System

Moment system:

− ∂

∂ε
(Sψl) +∇x(Bl ,l−1ψl−1 + Bl ,l+1ψl+1) = (σ

(l)
s − σ(0)

s )ψl + ql

Closure problem:

Model ψN+1

PN closure: ψN+1 = 0

Diffusion correction to PN (Levermore)

ψN+1 = − 1
σt

N+1
2N+3∂xψN

Other closures: simplified PN , flux-limited diffusion, closure by
optimal prediction



Minimum Entropy Closure

Idea:

Describe system by limited information (finitely many
moments)

Most probable state minimizes/maximizes entropy3

Rational Extended Thermodynamics4

Entropy :

Maxwell-Boltzmann

HR(ψ) =

∫
S2

ψ logψdΩ

Photons

HR(ψ) =

∫ ∞
0

∫
S2

2kν3

c2
(ψ̃ log ψ̃ − (ψ̃ + 1) log(ψ̃ + 1))dΩdν

3Jaynes, Phys. Rev. 1957, Minerbo 1978
4Müller, Ruggeri 1998



Minimum Entropy Closure II

Entropy Minimization Principle:

Determine ψME as

ψME = argminψHR(ψ)

under the constraints∫
S2

Y ∗l ψMEdΩ = ψl for l = 0, . . . ,N

Closure:

Set

ψN+1 =

∫
S2

Y ∗N+1ψMEdΩ



Mathematical Questions

Moment admissibility:

Given sequence of ψl

Existence of any ψ such that∫
S2

Y ∗l ψdΩ = ψl

Determinant criterion (a posteriori)

Existence & uniqueness of minimizer

Existence & uniqueness of minimizer guaranteed for radiative
transfer

Issues for Boltzmann’s equation5

5Hauck, Levermore, Tits, SIAM J. Control Optim. 2008



Computation of the Minimizer

Unconstrained Problem

L(ψ, α) = HR(ψ)−
N∑
l=0

αl

(∫
S2

Y ∗l ψdΩ− ψl

)
Minimizer (Maxwell-Boltzmann)

ψME = exp

(
N∑
l=0

αlYl

)

Lagrange multipliers αl determined by constraints



M1 Minimum Entropy Closure

Closure explicitly solvable for photons and N = 1

M1 minimum entropy6

− ∂

∂ε
(Sψ0) +∇xψ1 = q0

− ∂

∂ε
(Sψ1) +∇x

(
1

3
ψ0 +

2

3
ψ2

)
= (σ

(1)
s − σ(0)

s )ψ1

Eddington factor

1

3
ψ0 +

2

3
ψ2 =

(
3χ(‖N1‖)− 1

2
id − χ(‖N1‖)

2
N1 ⊗ N1

)
ψ0,

where N1 = ψ1/ψ0

6Minerbo, JQSRT 1978



Properties of the Minimum Entropy Closure

For standard radiative transfer:

System dissipates entropy7

∂tHR(ψ) ≤ 0

Symmetrizable (Lagrange multipliers as unknowns)

Correct diffusion and free-streaming limit8

Positivity of reconstructed distribution function

Expect positivity of radiative energy & flux limitation

7Levermore, J. Stat. Phys. 1996
8Coulombel, Golse, Goudon, Asymptot. Anal. 2005



SIMULATION RESULTS



Comparisons

Comparisons with PENELOPE 2008 Monte Carlo code
package

Monoenergetic electron beams approximated by narrow
Gaussians in both energy and angle

Stopping power S and transport coefficient σ
(1)
s − σ(0)

s from
ICRU database

Dose normalized to dose maximum

Computation times (laptop)

- Penelope with 15 million particles: 2.5 hours
- M1 in 2D on 200×200×450 grid: 40 seconds



10 MeV Electrons on Water



10 MeV Electrons on Water II
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15 MeV Electrons on Vertebral Column



OPTIMAL TREATMENT PLANNING



Planning Goal

Planning goal:
Destroy cancer cells
Minimize dose in healthy tissue
Spare regions at risk

Many biological models for radiation effect

Minimize tracking-type functional:9

J(ψ) =
αT

2

∫
ZT

(D−D̄)2dx+
αR

2

∫
ZR

(D−D̄)2dx+
αN

2

∫
ZN

(D−D̄)2dx

where D(x) =
∫∞

0

∫
S2 S(x , ε)ψ(x , ε,Ω)dΩdε.

9Shepard et al., Optimizing the delivery of radiation therapy to cancer
patients, SIAM Rev. 41 (1999) 721.



Constrained Optimization Problem

Find boundary value ψb ≥ 0 that minimizes:

J(ψ,ψb) =
αT

2

∫
ZT

(D − D̄)2dx +
αR

2

∫
ZR

(D − D̄)2dx

+
αN

2

∫
ZN

(D − D̄)2dx +
αC

2

∫
Γ−

(n · Ω)(ψb − ψ̄b)2dxdΩ

Constrained by integro-diffferential equation:

− ∂

∂ε
(Sψ) + Ω · ∇xψ =

∫
S2

σ̄sψdΩ′ − σ(0)
s ψ

with boundary condition ψ = ψb on Γ− and ψ(x ,∞,Ω) = 0



Adjoint Calculus

Lagrangian: L(ψb, ψ, λ) = J(ψb, ψ)− 〈λ,E (ψ,ψb)〉 where

〈λ,E (ψ,ψb)〉

=

∫
Z

∫ ∞

0

∫
S2

λ

(
−∂ε(Sψ) + Ω · ∇xψ −

∫
S2

σ̄sψdΩ′ + σ(0)
s ψ

)
dΩdεdx

=

∫
Z

∫ ∞

0

∫
S2

ψ

(
S∂ελ− Ω · ∇xλ−

∫
S2

σ̄sλdΩ′ + σ(0)
s λ

)
dΩdεdx

−
∫
Z

∫
S2

Sλψ|∞ε=0dΩdx +

∫
∂Z

∫ ∞

0

∫
S2

(n · Ω)λψdΩdεdx

Take functional derivatives with respect to ψb, ψ, λ to obtain
optimality conditions



First-order optimality conditions:

Forward equation

−∂ε(Sψ) + Ω · ∇xψ −
∫
S2

σ̄sψdΩ′ + σ
(0)
s ψ = 0

with ψ = ψb on Γ− and ψ(x ,∞,Ω) = 0

Adjoint equation

S∂ελ− Ω · ∇xλ−
∫
S2

σ̄sλdΩ′ + σ
(0)
s λ = α(D − D̄)

with λ = 0 on Γ+ and λ(x , 0,Ω) = 0

Update for control

αC (ψb − ψ̄b)− λ = 0



Optimization Method

Use update for control as gradient information in optimization
algorithm

Advantage of adjoints:
Obtain gradient independent of the discretization

Adjoints vs black-box optimization in 1D example:
Distributed control in 100 points
fmincon: 17 iterations, 1818 function evaluations
fmincon with adjoint: 30 iterations, 647 function evaluations



Example (Pn Discretization in 2D)



Conclusions & Future Work

Deterministic approach suitable for dose calculation

Investigate different approximations to radiative transfer from
a general point of view and select best for radiotherapy

Consider optimization problems constrained by
integro-differential equation

Many open questions in treatment planning, where
computational scientists can contribute


